

1. PCIe-5111/5112/5111B/5112B Specifications

Multi-functional Data Acquisition Boards

Overview

JYTEK JY-5110 series includes PCIe-5111/5112/5111B/5112B. PCle-5111/5111B provide up to 32 channels of analog inputs of up to 500K samples per second, 4 channels of analog outputs, 48 channels of digital IO or 4 32-bit counters/timers ; PCle-5112/5112B provide up to 16 channels of analog inputs of up to 250K samples per second, 2 channels of analog outputs, 24 channels of digital IO or 2 32-bit counters/timers.

• Please download JYTEK <JYPEDIA>, you can quickly inquire the product prices, the key features and available accessories.

1.1. Main Features

- High accuracy: 350 ppm (JY-5111/5111B), 300 ppm (JY-5112/5112B)
- Up to 32 single-ended/16 differential analog input channels(5111/5111B); Up to 16 single-ended/8 differential analog input channels(5112/5112B);
- Sampling rates: 500 kS/s for one channel, 300 kS/s for multi-channel(5111/5111B); 250 kS/s for one channel, 250 kS/s for multichannel(5112/5112B).
- 16 bits ADC
- Up to 128M samples of analog input FIFO buffer
- JY-5111B/5112B support 60 V Isolation

- 4(5111/5111B)/2(5112/5112B) simultaneous
 16-bit analog output channels
- 32M sample FIFO buffer for analog output
- 6 ports digital IO, 8(5111)/4(5112) lines per port
- DIO supports hardware timing up to 10MHz (5111)
- 4(5111)/2(5112) channels 32-bit timer/counter
- DMA for AI, AO and DIO
- Analog/Digital/Software Trigger

1.2. Analog Input

Analog Input	5111	5112	5111B	5112B	
Number of channels	ber of 32 SE / 16 DIFF 16 SE/ 8 DIFF		32 SE / 16 DIFF	16 SE/ 8 DIFF	
ADC resolution (Bits)		16	1	6	
Single channel maximum sample rate	500 kS/s	250 kS/s	500 kS/s	250 kS/s	
Multichannel maximum sample rate with same range(aggregate)	300 kS/s	250 kS/s	300 kS/s	250 kS/s	
Clock	100	MHz	100	MHz	
Input range(V)	±10/±5/±2.5/±1. 25/±0.625	±10/±5/±2.5/±1.2 5/±0.625	±10/±5/±2.5/±1.25/± 0.625	±10/±5/±2.5/±1.25/± 0.625	
Input mode	RSE / NRSE / Differential	RSE / NRSE / Differential	RSE / NRSE / Differential	RSE / NRSE / Differential	
Input impedance	>1 GΩ∥100 pF	>1 GΩ∥100 pF	>1 GΩ∥100 pF	>1 GΩ∥100 pF	
Input coupling	C	DC	DC		
Overvoltage protection	±2	5 V	±25	5 V	
CMRR	85	dB	85 dB		
Crosstalk	-80) dB	-80 dB		
DNL	No Miss	ing Code	No Missi	ng Code	
INL	70 ppm of F	ange Typical	70 ppm of R	ange Typical	
Input FIFO	64 M Samples	96 K Samples	128 M Samples	128 M Samples	
Trigger type	Digital, Ana	log, Software	Digital, Analog, Software		
Trigger mode	StartTrigger, ReferenceTrigger, ReTrigger		StartTrigger, ReferenceTrigger, ReTrigger		
Analog trigger voltage range	±10 V Software	e Programmable	±10 V Software	Programmable	
Overvoltage	Continuous :	20 mA, ±25 V	Continuous : 2	20 mA, ±25 V	
Protection	Instantaneous	: 40 mA, ±25 V	Instantaneous : 40 mA, ±25 V		

Table 1 Analog Input Specifications

1.3. Analog Output

Analog Output	5111	5112	5111B	5112B	
Number of channels	4	2	4	2	
DAC resolution	16	bits	16 bits		
Maximum update rate(simultaneous)	1 channel 2 channels 3 channels 4 channels	2.86 MS/s 2 MS/s 1.54 MS/s 1.25 MS/s	1 channel 2 channels 2 ba 3 channels 4 channels	2 MS/s MS/s (1 channel per nk)* s 1 MS/s s 1 MS/s	
Clock	100	MHz	100 MHz		
Clock accuracy	Jitter •	<20 ps	Jitter <20 ps		
Output range(V)	±10, ±5	±10	±10	±10	
Output mode	R	SE	R	SE	
Output impedance	2	Ω	2 Ω		
Output coupling	D	С	DC		
Output current drive	±10 mA		0 mA ±10 mA		
Output FIFO	32 M Samples	32 K Samples	32 M Samples	32 M Samples	
Trigger type	Digital, S	Software	Digital, Software		
Trigger mode	StartT	rigger	StartTrigger		

* Each bank consists of 2 AO channels. Any channels being used within a single bank will update

Table 2 Analog Output Specifications

1.4. Counter Input/Output

CIO	5111	5112	5111B	5112B			
Number of channels	4	2	4	2			
Resolution		33	2 bits	•			
Input Terminal	Gate(Z) ,Source(A) ,Aux(B) ,	Gate(Z) ,Source(A) ,Aux(B)	Gate(Z) ,Source(A) ,Aux(B) ,				
	Digital Trigger		Digital ⁻	Trigger			
	External Sample Clock		External Sa	mple Clock			
Output Terminal	OUT						
Input Mode	Single, Finite, Continuous	Single Single,Finite,Continuous					
	Edge Counting	Edge Counting					
	Period Measure	Period Measure					
	Frequency Measure	SemiPeriod Measure					
	Pulse Measure	Frequency Measure					
Input Type	Two Edge Separation Measure	Pulse Measure					
	Quadrature Encoder	Two Edge Separation Measure					
	Two Pulse Encoder		Quadrature Encoder				
			Two Pulse Encoder				
Internal timebase	200 MHz	N/A	100MHz/5M	Hz/100kHz			
Max SampleClock	10 MHz	N/A	10 N	ИНz			
External timebase	N/A	N/A	0-10M Hz				
Output Mode	Single, Finite and Continuous pulse	Single pulse	Single, Finite and	Continuous pulse			
FIFO per channel	4 M Samples	N/A 4 M Samples		mples			

Table 3 Counter Input Operations Specifications

1.5. Digital IO Specifications

DIO	5111	5112	5111B	5112B	
Number of channels	Port (0,1,2,3,4,5), 8 Lines per port	Port (0,1,2), 8 Lines per port	48 lines	24 lines	
Number of Dynamic DIO channels	Port (0,1,2,3), 8 Lines per port	N/A	32 lines (line0~line24)	24 lines (line0~line23)	
Ground reference	l	D GND	D GI	ND	
Directional control	Independent	control of each port	Independent control of each line		
Clock		10 MHz			
DI FIFO	16M Samples	N/A	16M Samples		
DO FIFO	16M Samples	N/A	16M Samples		
Clock	10 MHz	N/A	10 MHz		
Initial state		Input	Input		
Digital Input	Logic Low: V _{IL} Logic High: V _⊮	Min : 0 / Max : 1.0 V Min : 2 V / Max : 5.3	Logic Low: V_{\parallel} Min : 0 / Max : 1.0 V Logic High: V_{\parallel} Min : 2 V / Max : 5.3		
Digital Output	Logic Low : 0~	∕0.55 V, I _{OL} : 0~36 mA	Logic Low : 0~0.55 V, I _{OL} : 0~36 mA		
	Logic High :	3.8 V~5 V, I _{OH} : -36	Logic High : 3.8 V~5	5 V, I _{он} : -36 mA~0	
Ourse alterne Desta dien	Continuous 3 Instantaneo	30 mA, -3.9 V∼8.9 V us 200 mA, ±25 V;	Continuous 40 mA, -0.5 V~6.4 V		
Overvoltage Protection	Duty cycle of i pulse does	nstantaneous current s not exceed 15%	Duty cycle of instantaneous current pulse does not exceed 15%		

Table 4 Digital IO Specifications

1.6. PFI Specifications

PFI	5111	5112	5111B	5112B		
Number of channels	16					
External digital trigger	Trigger voltage : 5V TTL					
interface	Trigger edge: Rising/Falling					
Initial state		Input				

Table 5 PFI Specifications

1.7. Basic DC AI Accuracy

JY-5111 Basic Accuracy = ±(% Reading+% Range)

Nominal Range (V)	24 Hou	r Tca	al ±1C°		90 Day	s Tc	al ±5C°	24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy
0.625	0.010	+	0.045		0.024	+	0.120	340 uV	850 uV
1.25	0.004	+	0.024		0.008	+	0.063	330 uV	890 uV
2.5	0.004	+	0.020		0.008	+	0.050	570 uV	1500 uV
5	0.004	+	0.015		0.007	+	0.037	870 uV	2200 uV
10	0.004	+	0.012		0.007	+	0.028	1400 uV	3500 uV
Valid for any sharped only OFV of Confidence Interval									

Valid for one channel only. 95% of Confidence Interval

Max sampling rates for 5111: 500 kS/s

Add 20% to Gain and Offset Errors From 91 Days to 1 Year. Preliminary

Testing condition for AO accuracy: within 95% of full scale range.

JY-5112 Basic Accuracy = ±(% Reading+% Range)

Nominal Range (V)	24 Ho	ur Tcal	±1C°	90Day	' Tcal	±5C°	24 Hr Full Scale Accuracy	90 Days Full Scale Accuracy
0.625	0.004	+	0.046	0.010	+	0.120	310 uV	770 uV
1.25	0.003	+	0.032	0.008	+	0.079	430 uV	1100 uV
2.5	0.002	+	0.021	0.004	+	0.053	560 uV	1400 uV
5	0.002	+	0.015	0.005	+	0.037	830 uV	2100 uV
10	0.002	+	0.011	0.003	+	0.027	1200 uV	3000 uV
Valid for one channel only OFV of Confidence Interval								

Valid for one channel only. 95% of Confidence Interval

Max sampling rates for 5112: 250 kS/s

Add 20% to Gain and Offset Errors From 91 Days to 1 Year. Preliminary

Testing condition for AO accuracy: within 95% of full scale range.

Table 6 Basic Accuracy in DAQ Mode

1.8. Al Bandwidth

Analog Input Bandwidth						
Nominal Range Full Scale (V)	-3dB Bandwidth (KHz)					
±10	325					
±5	390					
±2.5	480					
±1.25	480					
±0.625	480					

Table 7 AI Bandwidth Specifications

1.9. Basic AO Accuracy

JY-5111 Basic AO Accuracy = ±(% of Output+% of Range)							
Nominal Range (V)	24 Hour Tcal ±1C°	90 Days Tcal ± 5°	24 Hr Full-Scale Accuracy	90 Days Full- Scale Accuracy			
5	0.004 + 0.007	0.009 + 0.017	490 uV	1300 uV			
10	0.004 + 0.005	0.009 + 0.013	830 uV	2100 uV			

Valid for all update rates. 95% Confidence Interval

Testing condition for AO accuracy: within 95% of full scale range.

Add accuracy adjustment if temperature is ouside calibration temperature range.

Add 20% to Gain and Offset Errors From 91 Days to 1 Year. Preliminary.

Maximum update rates(simultaneous)

1 Channel: 2.86 MS/s; 2 Channels: 1 MS/s; 3 Channels 1.54 MS/s; 4 Channels 1.25 MS/s

Specs subject to minor changes when more tests become available.

JY-5112 AO Basic Ac	curacy = ±(% Re	ading+% Range)					
Nominal Range (V)	24	Hour	Tcal ±1C°	90 Day	Тса	al ±5C°	24 Hr Full Scale Accuracy	90 Day Full Scale Accuracy
10	0.002	+	0.011	0.004	+	0.028	1300 uV	3100 uV

Table 8 Basic AO Accuracy

1.10. System Noise

	5111	5112	5111B	5112B
Range(V)	SystemNoise(µVrms)	SystemNoise(µVrms)	SystemNoise(µVrms)	SystemNoise(µVrms)
0.625	7	2	72	
1.25	9	3	93	
2.5	15	50	14	15
5	23	30	22	27
10	35	50	33	35

Table 9 System Noise for PCIe-5111

1.11. Physical and Environment

Operating Environment

Ambient temperature range	0 °C to 50 °C		
Relative humidity range	20% to 80%, noncondensing		

Storage Environment

Ambient temperature range	-20 °C to 80 °C
Relative humidity range	10% to 90%, noncondensing

Table 10 Physical and Environment

1.12. Front Panel and Pin Definition

Figure 1 PCIe 5111 Front Panel

5111 Counter Pin Definition on Connector 0 as show in Table 11.

Connector 0				
Pin	Signal Name	Pin	Signal Name	
1	PFI 14 /P5.6/DO_ECL K	35	D_GND	
2	PFI 12/P5.4	36	D GND	
3	PFI 9/P5.1	37	PFI 8/P5.0	
4	D GND	38	PFI 7/P4.7	
5	PFI 6 /P4.6/ AO ECLK	39	PFI 15/P5.7	
6	PFI 5/P4.5	40	PFI 13/P5.5	
7	D GND	41	PFI 4/P4.4	
8	+5V OUT	42	PFI 3/P4.3	
			PFI 2	
9	D_GND	43	/P4.2/AI ECLK	
10	PFI 1/P4.1	44	DGND	
11	PFI 0/P4.0	45	PFI10	
			/P5.2/DI ECLK	
12	D GND	46	 PFI 11/P5.3	
13	D GND	47	P0.3	
14	+5V OUT	48	P0.7	
15	D GND	49	P0.2	
16	P0.6	50	D GND	
17	P0.1	51	 P0.5	
18	D GND	52	P0.0	
19	P0.4	53	D GND	
20	RSVD	54	_ AO GND	
21	AO 1	55	AO GND	
22	AO 0	56	AI GND	
23	AI 15(AI 7-)	57	AI 7 (AI 7+)	
24	AL GND	58	AI 14 (AI 6-)	
25	AI 6 (AI 6+)	59	AL GND	
26	AI 13 (AI 5-)	60	AI 5 (AI 5+)	
27	AL GND	61	AI 12 (AI 4-)	
28	AI 4 (AI 4+)	62	AI_SENSE 0	
29	AI_GND	63	AI 11 (AI 3-)	
30	AI 3 (AI 3+)	64	AI_GND	
31	AI10 (AI 2-)	65	AI 2 (AI 2+)	
32	AI_GND	66	AI 9 (AI 1-)	
33	AI 1 (AI 1+)	67	AI_GND	
34	AI 8 (AI 0-)	68	AI 0 (AI 0+)	

Connector 1				
Pin	Signal Name	Pin	Signal Name	
1	P3.6	35	D_GND	
2	P3.4	36	D_GND	
3	P3.1	37	P3.0	
4	D GND	38	P2.7	
5	P2.6	39	P3.7	
6	P2.5	40	P3.5	
7	D GND	41	P2.4	
8	+5V_OUT	42	P2.3	
9	D_GND	43	P2.2	
10	P2.1	44	DGND	
11	P2.0	45	P3.2	
12	D GND	46	P3.3	
13	D GND	47	P1.3	
14		48	P1.7	
15	D GND	49	P1.2	
16	P1.6	50	D GND	
17	P1.1	51	P1.5	
18	D GND	52	P1.0	
19	 P1.4	53	D GND	
20	RSVD	54	AO GND	
21	AO 3	55	AO GND	
22	AO 2	56	AI GND	
23	AI 31 (AI 23-)	57	AI 23 (AI 23+)	
24	AL GND	58	Al 30 (Al 22-)	
25	AI 22 (AI 22+)	59		
26	Al 29 (Al 21-)	60	AI 21 (AI 21+)	
27	AI GND	61	AI 28 (AI 20-)	
28	Al 20 (Al 20+)	62	AI_SENSE 1	
29	AI_GND	63	AI 27 (AI 19-)	
30	AI 19 (AI 19+)	64	AI_GND	
31	AI26 (AI 18-)	65	AI 18 (AI 18+)	
32	AI_GND	66	AI 25 (AI 17-)	
33	AI 17 (AI 17+)	67	AI_GND	
34	AI 24 (AI 16-)	68	Al 16 (Al 16+)	

Pin	Signal Name	Pin	Signal Name
11	CTR0_Source/A	42	CTR1_Source/A
10	CTR0_Gate/Z	41	CTR1_Gate/Z
43	CTR0_AUX/B	6	CTR1_AUX/B
2	CTR0_OUT	40	CTR1_OUT
5	CTR2_Source/A	3	CTR3_Source/A
38	CTR2_Gate/Z	45	CTR3_Gate/Z
37	CTR2_AUX/B	46	CTR3_AUX/B
1	CTR2_OUT	39	CTR3_OUT

Table 11 5111 Pin Definition

AI_GND	Analog Input Reference Ground
Al<031>	Analog Input channel
AI SENSE	Analog Input Signal, Suitable for NRSE mode
AO_GND	Analog Output Reference Ground
AO<03>	Analog Output Channel
D_GND	Digital Signal Reference Ground
P<03>.<07>	Digital I/O Channel
PFI<015>	Programmable Function Interface
+5V_OUT	5V power supply
RSVD	Do Not Connect

Table 12 5111 Cable Specification

	Connector 0			
Pin	Signal Name	Pin	Signal Name	
1	PFI14/P2.6	35	D_GND	
2	P2.4/PFI12	36	D_GND	
3	P2.1/PFI9	37	P2.0/PFI8	
4	D_GND	38	P1.7/PFI7	
5	P1.6/PFI6/AO_ELCK	39	P2.7/PFI15	
6	P1.5/PFI5	40	P2.5/PFI13	
7	D_GND	41	P1.4/PFI4	
8	+5V_OUT	42	P1.3/PFI3	
9	D_GND	43	P1.2/PFI2/AI_ECLK	
10	P1.1/PFI1	44	D_GND	
11	P1.0/PFI0	45	P2.2/PFI10	
12	D_GND	46	P2.3/PFI11	
13	D_GND	47	P0.3	
14	+5V_OUT	48	P0.7	
15	D_GND	49	P0.2	
16	P0.6	50	D_GND	
17	P0.1	51	P0.5	
18	D_GND	52	P0.0	
19	P0.4	53	D_GND	
20	NC*	54	AO_GND	
21	AO 1	55	AO_GND	
22	AO 0	56	AI_GND	
23	AI 15 (AI 7-)	57	AI 7 (AI 7+)	
24	AI_GND	58	AI 14 (AI 6-)	
25	AI 6 (AI 6+)	59	AI_GND	
26	AI 13 (AI 5-)	60	AI 5 (AI 5+)	
27	AI_GND	61	AI 12 (AI 4-)	
28	AI 4 (AI 4+)	62	AI_SENSE	
29	AI_GND	63	AI 11 (AI 3-)	
30	AI 3 (AI 3+)	64	AI_GND	
31	AI10 (AI 2-)	65	AI 2 (AI 2+)	
32	AI_GND	66	AI 9 (AI 1-)	
33	AI 1 (AI 1+)	67	AI_GND	
34	AI 8 (AI 0-)	68	AI 0 (AI 0+)	
Pin	Signal Name	Pin	Signal Name	
11	CTR0_Source/A	42	CTR1_Source/A	
10	CTR0_Gate/Z	41	CTR1_Gate/Z	
43	CTR0_AUX/B	6	CTR1_AUX/B	
37	CTR0_OUT	3	CTR1_OUT	

Table 13 5112 Pin Definition

AI_GND	Analog Input Reference Ground	
Al<031>	Analog Input channel	
AI SENSE	Analog Input Signal, Suitable for NRSE mode	
AO_GND	Analog Output Reference Ground	
AO<03>	Analog Output Channel	
D_GND	Digital Signal Reference Ground	
P<03>.<07>	Digital I/O Channel	
PFI<015>	Programmable Function Interface	
+5V_OUT	5V power supply	

	Conne	0	
Pin	Identification	Pin	Identification
1	PFI 14 /DO_ECLK	35	D_GND
2	PFI 12	36	D_GND
3	PFI 9	37	PFI 8
4	D_GND	38	PFI 7
5	PFI 6/ AO_ECLK	39	PFI 15
6	PFI 5	40	PFI 13
7	D_GND	41	PFI 4
8	+5V_OUT	42	PFI 3
9	D_GND	43	PFI 2 /AI_ECLK
10	PFI 1	44	DGND
11	PFI O	45	PFI 10/DI_ECLK
12	D_GND	46	PFI 11
13	D_GND	47	P0.3
14	+5V_OUT	48	P0. 7
15	D_GND	49	P0. 2
16	P0.6	50	D_GND
17	P0.1	51	P0.5
18	D_GND	52	P0.0
19	P0.4	53	D_GND
20	RSVD	54	AO_COM
21	AO 1	55	AO_COM
22	AO O	56	AI_COM
23	AI 15 (AI 7-)	57	AI 7 (AI 7+)
24	AI_COM	58	AI 14 (AI 6-)
25	AI 6 (AI 6+)	59	AI_COM
26	AI 13 (AI 5-)	60	AI 5 (AI 5+)
27	AI_COM	61	AI 12 (AI 4-)
28	AI 4 (AI 4+)	62	AI_SENSE 0
29	AI_COM	63	AI 11 (AI 3-)
30	AI 3 (AI 3+)	64	AI_COM
31	AI10 (AI 2-)	65	AI 2 (AI 2+)
32	AI_COM	66	AI 9 (AI 1-)
33	AI 1 (AI 1+)	67	AI_COM
34	AT 8 (AT 0-)	68	AI 0 (AI 0+)

	Connector 1			
Pin	Identification	Pin	Identification	
1	P3.6	35	D_GND	
2	P3.4	36	D_GND	
3	P3.1	37	P3.0	
4	D_GND	38	P2.7	
5	P2.6	39	P3.7	
6	P2.5	40	P3.5	
7	D_GND	41	P2.4	
8	+5V_OUT	42	P2.3	
9	D_GND	43	P2.2	
10	P2.1	44	DGND	
11	P2.0	45	P3.2	
12	D_GND	46	P3.3	
13	D_GND	47	P1.3	
14	+5V_OUT	48	P1.7	
15	D_GND	49	P1.2	
16	P1.6	50	D_GND	
17	P1.1	51	P1.5	
18	D_GND	52	P1.0	
19	P1.4	53	D_GND	
20	RSVD	54	AO_COM	
21	AO 3	55	AO_COM	
22	AO 2	56	AI_COM	
23	AI 31 (AI 23-)	57	AI 23 (AI 23+)	
24	AI_COM	58	AI 30 (AI 22-)	
25	AI 22 (AI 22+)	59	AI_COM	
26	AI 29 (AI 21-)	60	AI 21 (AI 21+)	
27	AI_COM	61	AI 28 (AI 20-)	
28	AI 20 (AI 20+)	62	AI_SENSE 1	
29	AI_COM	63	AI 27 (AI 19-)	
30	AI 19 (AI 19+)	64	AI_COM	
31	AI26 (AI 18-)	65	AI 18 (AI 18+)	
32	AI_COM	66	AI 25 (AI 17-)	
33	AI 17 (AI 17+)	67	AI_COM	
34	AI 24 (AI 16-)	68	AI 16 (AI 16+)	

Pin	Signal Name	Pin	Signal Name
11	CTR0_Source/A	42	CTR1_Source/A
10	CTR0_Gate/Z	41	CTR1_Gate/Z
43	CTR0_AUX/B	6	CTR1_AUX/B
2	CTR0_OUT	40	CTR1_OUT
5	CTR2_Source/A	3	CTR3_Source/A
38	CTR2_Gate/Z	45	CTR3_Gate/Z
37	CTR2_AUX/B	46	CTR3_AUX/B
1	CTR2_OUT	39	CTR3_OUT

Table 15 5111B Pin Definition

Connector 0			
Pin	Identification	Pin	Identification
1	PFI 14 /DO_ECLK	35	D_GND
2	PFI 12	36	D_GND
3	PFI 9	37	PFI 8
4	D_GND	38	PFI 7
5	PFI 6/ AO_ECLK	39	PFI 15
6	PFI 5	40	PFI 13
7	D_GND	41	PFI 4
8	+5V_OUT	42	PFI 3
9	D_GND	43	PFI 2 /AI_ECLK
10	PFI 1	44	DGND
11	PFI O	45	PFI 10/DI_ECLK
12	D_GND	46	PFI 11
13	D_GND	47	P0.3
14	+5V_OUT	48	P0.7
15	D_GND	49	P0.2
16	P0.6	50	D_GND
17	P0.1	51	P0.5
18	D_GND	52	P0.0
19	P0.4	53	D_GND
20	APFI_0	54	AO_COM
21	AO 1	55	AO_COM
22	AO O	56	AI_COM
23	AI 15 (AI 7-)	57	AI 7 (AI 7+)
24	AI_COM	58	AI 14 (AI 6-)
25	AI 6 (AI 6+)	59	AI_COM
26	AI 13 (AI 5-)	60	AI 5 (AI 5+)
27	AI_COM	61	AI 12 (AI 4-)
28	AI 4 (AI 4+)	62	AI_SENSE 0
29	AI_COM	63	AI 11 (AI 3-)
30	AI 3 (AI 3+)	64	AI_COM
31	AI10 (AI 2-)	65	AI 2 (AI 2+)
32	AI_COM	66	AI 9 (AI 1-)
33	AI 1 (AI 1+)	67	AI_COM
34	AI 8 (AI 0-)	68	AI 0 (AI 0+)

Pin	Signal Name	Pin	Signal Name
11	CTR0_Source/A	42	CTR1_Source/A
10	CTR0_Gate/Z	41	CTR1_Gate/Z
43	CTR0_AUX/B	6	CTR1_AUX/B
2	CTR0_OUT	40	CTR1_OUT
5	CTR2_Source/A	3	CTR3_Source/A
38	CTR2_Gate/Z	45	CTR3_Gate/Z
37	CTR2_AUX/B	46	CTR3_AUX/B
1	CTR2_OUT	39	CTR3_OUT

Table 16	5112B	Pin Definition
----------	-------	-----------------------

2. Table of Contents

Table of Contents

1.	PCIe-5111/5112/5111B/5112B Specifications	1
	1.1. Main Features	1
	1.2. Analog Input	2
	1.3. Analog Output	3
	1.4. Counter Input/Output	3
	1.5. Digital IO Specifications	4
	1.6. PFI Specifications	4
	1.7. Basic DC AI Accuracy	5
	1.8. AI Bandwidth	5
	1.9. Basic AO Accuracy	6
	1.10. System Noise	6
	1.11. Physical and Environment	6
	1.12. Front Panel and Pin Definition	7
2.	Table of Contents	14
3.	Software	20
	3.1. Supported Operating System	.20
	3.2. Programming Languages	.20
4.	Order Information	20
5.	JYPEDIA	20
6.	Additional Hardware Information	21
	6.1. Basic DC AI Accuracy	.21
	6.2. Basic AO Accuracy	.21
7.	Additional Software Information	23
	7.1. System Requirements	.23
	7.2. System Software	.23
	7.3. C# Programming Language	.24
	7.4. PCIe-5111 Series Hardware Driver	.24

	7.5. Install the SeeSharpTools from JYTEK	24
	7.6. Running C# Programs in Linux	25
8.	Operating JY5111	26
	8.1. Quick Start	26
	8.2. Data Acquisition Methods	26
	8.2.1. Continuous Acquisition	30
	8.2.2. Finite Acquisition	30
	8.2.3. Single Point Acquisition	31
	8.2.4. Record Acquisition	31
	8.3. Analog Input Terminal Type	31
	8.3.1. DIFF Mode	31
	8.3.2. RSE Mode	33
	8.3.3. NRSE Mode	34
	8.4. Trigger Source	35
	8.4.1. Immediate trigger	35
	8.4.2. Software Trigger	36
	8.4.3. External Analog Trigger	37
	8.4.4. External Digital Trigger	43
	8.5. Trigger Mode	45
	8.5.1. Start Trigger	45
	8.5.2. Reference Trigger	46
	8.5.3. ReTrigger	47
	Learn by Example 8.5	47
	8.6. AO Operations	50
	8.6.1. Finite Output	50
	8.6.2. Continuous NoWrappping Output	53
	8.6.3. Continuous Wrapping Output	56
	8.7. Digital I/O Operations	59
	8.7.1. Static DI/DO	59
	8.7.2. Dynamic DI/DO	61
	8.8. Counter Input Operations	63
	8.8.1. Edge Counting	64

8.8.2. Pulse Measurement	69
8.8.3. Frequency Measurement	74
8.8.4. Period Measurement	78
8.8.5. Two-Edge Separation	79
8.8.6. Quadrature Encoder	83
8.8.7. Two-Pulse Encoder	88
8.9. Counter Output Operations	93
8.9.1. Single Pulse Output	93
8.9.2. Finite Pulse Output	95
8.9.3. Continuous Pulse Output	97
8.10. System Synchronization Interface (SSI) for PCIe Modules	99
8.11. DIP Switch in PCIe-5111	100
9. Calibration	101
10. Appendix(Measurement Issues)	102
10.1. Floating Signals and Ground Referenced Signals	102
10.2. Differential, NRSE, RSE Modes	102
10.3. Reducing the Common Mode Voltage Effect	103
11. About JYTEK	105
11.1. JYTEK China	105
11.2. JYTEK Software Platform	105
11.3. JYTEK Warranty and Support Services	105
12. Statement	

Table 1 Analog Input Specifications	2
Table 2 Analog Output Specifications	3
Table 3 Counter Input Operations Specifications	3
Table 4 Digital IO Specifications	4
Table 5 PFI Specifications	4
Table 6 Basic Accuracy in DAQ Mode	5
Table 7 AI Bandwidth Specifications	5
Table 8 Basic AO Accuracy	6
Table 9 System Noise for PCIe-5111	6
Table 10 Physical and Environment	6
Table 11 5111 Pin Definition	9
Table 12 5111 Cable Specification	9

Table 13 5112 Pin Definition	
Table 14 5112 Cable Specification	11
Table 15 5111B Pin Definition	
Table 16 5112B Pin Definition	13
Table 17 Supported Linux Versions	23
Table 18 SSI Connector Pin Assignment for PCIe-5111	
Table 19 Relationship between switch position and slot num	ber 100
Figure 1 PCIe 5111 Front Panel	7
Figure 2 Sample Rate and Internal AD Conversion	27
Figure 3 PCIe-5111 experiment	
Figure 4 TB-68 Terminal Block	
Figure 5 Continuous MultiChannel Paraments	29
Figure 6 MultiChannel Continuous Acquisition	
Figure 7 Differential Mode for Grounding Signals	
Figure 8 Choose Differential in AI Terminal	
Figure 9 RSE Mode for Floating Signals	
Figure 10 NRSE Mode for Grounding Signals	
Figure 11 Choose NRSE In AI Terminal	35
Figure 12 Immediate trigger Paraments	
Figure 13 Software trigger Paraments	
Figure 14 Software trigger Acquisition	
Figure 15 Rising Slope Trigger	
Figure 16 Falling Slope Trigger	
Figure 17 Hysteresis with Rising Slope Trigger	
Figure 18 Hysteresis with Falling Slope Trigger	
Figure 19 Entering Window Trigger	41
Figure 20 Leaving Window Trigger	41
Figure 21 Analog Trigger Paraments	
Figure 22 Waiting For Trigger	
Figure 23 Analog Trigger Acquisition	
Figure 24 External Digital Trigger	
Figure 25 Digital Trigger Paraments	
Figure 26 Digital Trigger Acquisition	45
Figure 27 Start Trigger	
Figure 28 Reference Trigger	
Figure 29 ReTrigger	
Figure 30 Retrigger Paraments	
Figure 31 Retrigger In Start Trigger Mode	
Figure 32 Retrigger In Reference Trigger Mode	
Figure 33 Complete Retrigger Count	50
Figure 34 AI Continuous Paraments	51
Figure 35 AO Finite Output Paraments	51
Figure 36 AO Finite Signal	

Figure 37 AI Acquisition Signal	52
Figure 38 AI Continuous Paraments	53
Figure 39 AO ContinuousNoWrapping Output Paraments	54
Figure 40 AO ContinuousNoWrapping Signal	55
Figure 41 AI Acquisition AO Sin Signal	55
Figure 42 Update AO Square Signal	56
Figure 43 AI Acquisition AO Square Signal	56
Figure 44 AI Continuous Paraments	57
Figure 45 AO Continuous Wrapping Paraments	58
Figure 46 AO Continuous Wrapping Signal	58
Figure 47 AI Acquisition AO Signal	59
Figure 48 Single Digital Output	60
Figure 49 Single Digital Input	61
Figure 50 DI Continuous Paraments	62
Figure 51 DO ContinuousNoWrapping Output	62
Figure 52 DI Continuous Acquisition	63
Figure 53 Counter Terminal	63
Figure 54 Counter Signal Wiring Instruction	64
Figure 55 Simple Edge Counting in Single Mode	65
Figure 56 Buffered Edge Counting with Internal Sample Clock	65
Figure 57 Simple Edge Counting with Implicit SampleClk	66
Figure 58 Count Direction	66
Figure 59 EdgeCounting For Single Mode	67
Figure 60 EdgeCounting For Finite Mode	68
Figure 61 Counter Values For Internal Clock	68
Figure 62 Counter Values For Implicit Clock	69
Figure 63 Pulse Measurement in Single Mode	70
Figure 64 Pulse Measurement with Internal SampleClk	70
Figure 65 Pulse Measurement with Implicit SampleClk	71
Figure 66 Pulse Measure For Single Mode	71
Figure 67 Pulse Measure Value For Single Mode	72
Figure 68 Pulse Measure For Finite Mode	73
Figure 69 Pulse Measure Values For Finite Mode	73
Figure 70 Frequency Measurement with Internal Sample Clock	75
Figure 71 Frequency Measure For Single Mode	76
Figure 72 Frequency Measure For Continuous Mode	77
Figure 73 Frequency Measure Values	77
Figure 74 Peroid Measure For Single Mode	78
Figure 75 Peroid Measure For Continuous Mode	79
Figure 76 Two-Edge Separation in Single Mode	80
Figure 77 Two-Edge Separation with Internal Sample Clock	81
Figure 78 Two-Edge Separation with Implicit Sample Clock	81
Figure 79 Two-EdgeSeparation Measure For Single Mode	82
Figure 80 Two-EdgeSeparation Measure For Finite Mode	83

Figure 81 Quadrature Encoder x1 Mode	84
Figure 82 Quadrature Encoder x2 Mode	84
Figure 83 Quadrature Encoder x4 mode	85
Figure 84 Quadrature Encoder x1 with Sample Clock	86
Figure 85 Quadrature Encoder x1 with Implicit Sample Clock	86
Figure 86 QuadEncoder For Single Mode	87
Figure 87 QuadEncoder For Continuous Mode	88
Figure 88 Two-Pulse Encoder in Single Mode	89
Figure 89 Two-Pulse Encoder with Internal Sample Clock	89
Figure 90 Two-Pulse Encoder with Implicit Sample Clock	90
Figure 91 Two-PulseEncoder For Single Mode	91
Figure 92 Two-PulseEncoder For Finite Mode	92
Figure 93 Two-PulseEncoder For Continuous Mode	93
Figure 94 Single Pulse Output	93
Figure 95 Single Pulse Generation	94
Figure 96 AI Acquisition Single Pulse	95
Figure 97 Finite Pulse Output	95
Figure 98 Finite Pulses Generation	96
Figure 99 AI Acquisition Finite Pulse	97
Figure 100 Continuous Pulse Output	97
Figure 101 Continuous Pulse Generation	98
Figure 102 AI Acquisition Continuous Pulse	98
Figure 103 SSI Connector in PCIe-5111	99
Figure 104 DIP swich in PCIe-5111	. 100
Figure 105 Six Measurement Scenarios	. 103
Figure 106 Using Resister to Reduce Common Mode Voltage Effect .	. 104

3. Software

3.1. Supported Operating System

Windows 7/10, x64/x86, Linux. See additional information.

3.2. Programming Languages

Microsoft C#. See additional software information for other languages.

4. Order Information

• PCle-5111 (PN: JY2953885-01)

32-ch AI (16-Bit, 500 kS/s), 4-ch AO (16-Bit, 2.86 MS/s), 48DIO PCIe Multifunction I/O Card

• PCIe-5112 (PN: JY1922016-01)

16-ch AI (16-Bit,500 kS/s), 2-ch AO (16-Bit, 2.86 MS/s), 24DIO PCIe Multifunction I/O Card

- PCIe-5111B(PN: JY8379886-01)
 32-ch Al (16-Bit,500 kS/s), 4-ch AO (16-Bit,2 MS/s), 48DIO PCIe Board Isolated Multifunction I/O Module
- PCIe-5112B (PN: JY9786666-01)
 16-ch Al (16-Bit,500 kS/s), 2-ch AO (16-Bit,2 MS/s), 24DIO PCle Board Isolated Multifunction
 I/O Module
- Accessories:

DIN-68 (PN: JY2953885-01)

ACL-1016868-1 (PN: JY7996916-01) 1 M 68pin VHDC-SCSI twisted pair cable

ACL-1016868-2 (PN: JY7996916-02) 2 M 68pin VHDC-SCSI twisted pair cable

5. JYPEDIA

JYPEDIA is an excel file. It contains JYTEK product information, pricing, inventory information, drivers, software, technical support, knowledge base etc. You can register and download a JYPEDIA excel file from our web www.jytek.com. JYTEK

highly recommends you use this file to obtain information from JYTEK.

6. Additional Hardware Information

6.1. Basic DC AI Accuracy

The DAQ mode is the normal data acquisition mode commonly found in commercial DAQ hardware. The basic AI DC accuracy Table 6 of the DAQ mode provides accuracy entries when PCIe-5111 operates in the single channel mode and within the indicated calibration temperature range. Please note that this accuracy is valid for every single point regardless how many sample points you acquire.

Each entry in the basic accuracy table is a pair of gain and offset coefficients. Using these gain and offset coefficients, your measurement accuracy can be calculated by following formula:

 $Accuracy = \pm (\% \ of \ Reading + \% \ of \ Range)$

For example, at the 0.625 V range and 24 Hours column, if your measurement or reading is 0.02V, the accuracy of this measurement is:

 $\pm (0.0013\% * 0.02 + 0.0544\% * 0.625) = \pm 0.00034 V = \pm 340 \mu V$

The basic accuracy table also provides full-scale accuracy entries for a quick and convenient look-up. For example, the full-scale accuracy for the 0.625 V range and the 24-Hour calibration column is 348μ V.

6.2. Basic AO Accuracy

The AO output accuracy of PCIe-5111 when using the analog output function can be calculated according to the corresponding parameters in the Table 8

Each entry in the basic accuracy table is a pair of gain and offset coefficients. Using these gain and offset coefficients, your AO output basic accuracy is calculated by following formula:

$$Accuracy = \pm (\% of Output + \% of Range)$$

For example, at the 5V range and 24 Hours column, if your output is 2V, the accuracy of this measurement is:

$$\pm (0.0014\% * 2 + 0.0043\% * 5) = \pm 0.000243V = \pm 243 \,\mu V$$

The basic accuracy table also provides full-scale accuracy entries for a quick and convenient look-up. For example, the full-scale accuracy for the 5V range and the 24-Hour calibration column is 285 μ V.

7. Additional Software Information

7.1. System Requirements

PCIe-5111 series boards can be used in a Windows or a Linux operating system.

Microsoft Windows: Windows 7 32/64 bit, Windows 10 32/64 bit.

Linux Kernel Versions: There are many Linux versions. It is not possible JYTEK can support and test our devices under all different Linux versions. JYTEK supports the following Linux versions only.

Linux Version
Ubuntu LTS
16.04: 4.4.0-21-generic(desktop/server)
16.04.6: 4.15.0-45-generic(desktop) 4.4.0-142-generic(server)
18.04: 4.15.0-20-generic(desktop) 4.15.0-91-generic(server)
18.04.4: 5.3.0-28-generic (desktop) 4.15.0-91-generic(server)
Localized Chinese Version
中标麒麟桌面操作系统软件(兆芯版)V7.0(Build61): 3.10.0-862.9.1.nd7.zx.18.x86_64
中标麒麟高级服务器操作系统软件V7.0U6: 3.10.0-957.el7.x86_64

Table 17 Supported Linux Versions

7.2. System Software

When using the PCIe-5111 series in the Window environment, you need to install the

following software from Microsoft website:

Microsoft Visual Studio Version 2015 or above,

.NET Framework version is 4.0 or above.

.NET Framework is coming with Windows 10. For Windows 7, please check .NET Framework version and upgrade to 4.0 or later version.

Given the resources limitation, JYTEK only tested PCIe-5111 be with .NET Framework 4.0 with Microsoft Visual Studio 2015. JYTEK relies on Microsoft to maintain the compatibility for the newer versions.

7.3. C# Programming Language

All JYTEK default programming language is Microsoft C#. This is Microsoft recommended programming language in Microsoft Visual Studio and is particularly suitable for the test and measurement applications. C# is also a cross platform programming language.

7.4. PCIe-5111 Series Hardware Driver

After installing the required application development environment as described above, you need to install the PCIe-5111 hardware driver.

JYTEK hardware driver has two parts: the shared common driver kernel software (FirmDrive) and the specific hardware driver.

Common Driver Kernel Software (FirmDrive): FirmDrive is the JYTEK's kernel software for all hardware products of JYTEK instruments. You need to install the FirmDrive software before using any other JYTEK hardware products. FirmDrive only needs to be installed once. After that, you can install the specific hardware driver.

Specific Hardware Driver: Each JYTEK hardware has a C# specific hardware driver. This driver provides rich and easy-to-use C# interfaces for users to operate various PCIe-5111 function. JYTEK has standardized the ways which JYTEK and other vendor's DAQ boards are used by providing a consistent user interface, using the methods, properties and enumerations in the object-oriented programming environment. Once you get yourself familiar with how one JYTEK DAQ card works, you should be able to know how to use all other DAQ hardware by using the same methods.

Note that this driver does not support cross-process, and if you are using more than one function, it is best to operate in one process.

7.5. Install the SeeSharpTools from JYTEK

To efficiently and effectively use PCIe-5111 boards, you need to install a set of free C# utilities, SeeSharpTools from JYTEK. The SeeSharpTools offers rich user interface functions you will find convenient in developing your applications. They are also

needed to run the examples come with PCIe-5111 hardware. Please register and download the latest SeeSharpTools from our website, www.jytek.com.

7.6. Running C# Programs in Linux

Most C# written programs in Windows can be run by MonoDevelop development system in a Linux environment. You would develop your C# applications in Windows using Microsoft Visual Studio. Once it is done, run this application in the MonoDevelop environment. This is JYTEK recommended way to run your C# programs in a Linux environment.

If you want to use your own Linux development system other than MonoDevelop, you can do it by using our Linux driver. However, JYTEK does not have the capability to support the Linux applications. JYTEK completely relies upon Microsoft to maintain the cross-platform compatibility between Windows and Linux using MonoDevelop.

8. Operating JY5111

This chapter provides the operation guides for PCIe-5111, including AI, AO, DI, DO, Timer and programmable I/O interface, etc.

JYTEK provides extensive examples, on-line help and documentation to assist you to operate the PCIe-5111 board. JYTEK strongly recommends you go through these examples before writing your own application. In many cases, an example can also be a good starting point for a user application.

8.1. Quick Start

After you have installed the driver software and the SeeSharpTools, you are ready to use Microsoft Visual Studio C# to operate the PCIe-5111 products.

If you are already familiar with Microsoft Visual Studio C#, the quickest way to use PCIe-5111 boards is to go through our extensive examples. We provide source code of our examples. In many cases, you can modify the source code and start to write your applications.

We also provide **Learn by Example** in the following sections. These examples will help you navigate and learn how to use this PCIe-5111.

8.2. Data Acquisition Methods

PCIe-5100 uses a scanning method to acquire analog data, meaning there is only one ADC chip on the device and all input channels share this ADC. In the scan acquisition mode, you need to configure AI channels and set up some parameters through PCIe-5111 driver software. The most important parameters are *Data Acquisition mode*, *Sample Rate, SamplesToAcquire, Channel Count, ChannelRange* and *Analog Input Terminal Type*.

Al Acquisition mode (*AlMode*):PCle-5111 provides 4 acquisition modes, **Continuous**, **Finite**, **Single Point**, **Record**, which will be described in details in Section 8.2.1-8.2.4.

SampleRate: How fast data are acquired per second per channel. For example, if the sample rate is 1000Hz, you acquire two channels of data, you will have 2000 points/second.

SamplesToAcquire: This parameter behaves differently in the different AI acquisition modes. In the continuous acquisition mode, *SamplesToAcuire* is the buffer size used in the AI acquisition task, please see Section8.2.1; in the finite acquisition mode, it is the total number of samples to capture, please see Section8.2.2.

Channel Count: how many channels you want to collect data. You can set up the channels in different orders, for instance 2,3,1,0. The acquired data will be arranged in the way you specify as shown in Figure 2. In this particular case, *Channel Count* is 4.

Figure 2 Sample Rate and Internal AD Conversion

ConvertRate denotes the working rate of ADC. In default: *ConvertRate* = *SampleRate* * *ChannelCount* . User can redefine the *ConvertRate* in our software. If user want to redefine *ConvertRate, The following conditions must be met:*

Multichannel maximum sample rate (aggregate) >=ConvertRate >= SampleRate * ChannelCount.

User can get Multichannel maximum sample rate (aggregate) from section Appendix.

Learn by Example 8.2

Connect the two signal source's positive outputs to PCIe-5111 AI Ch0 (AI0+, Pin #68) and AI Ch1 (AI1+, Pin#33), two negative terminals to the ground (AI_GND, Pin#67) as shown in Figure 3 and Figure 4 (AI0+, AI_GND) and (AI1+, AI_GND) consist of two channels of RSE inputs and they share the same GND.

Figure 3 PCIe-5111 experiment

JYTEK	TB-68 SCSI-II terminal b temperature ser 5500 Series Connector O[Connec	ctor 1]	Sensor Setting SW2 ON I temperature sensor Default Mode)
J1 (43) PF12(P2.2] 9 D_eND (42) PF13(P2.3] 8 +5V_0UT (41) PF14(P2.4] 7 D_eND (40) PF113(P3.5] 6 PF15(P2.5] 39 PF15(P2.5] 39 PF16(P2.6] 38 PF17(P2.7] 4 D_eND 37 PF18(P3.0] 3 PF19(P3.1] 36 D_eND 2 PF112(P3.4] 35 D_eND 1 PF114(P3.6]	J2 (51) PO. 5[P1. 5] (17) PO. 1[P1. 1] (50) D_GND (16) PO. 6[P1. 6] (49) PO. 2[P1. 2] (15) D_GND (48) PO. 7[P1. 7] (14) +5V_OUT (47) PO. 3[P1. 3] (13) D_GND (46) PF111[P3. 3] (12) D_GND (45) PF110[P3. 2] (11) PF10[P2. 0] (44) DGND (10) PF11[P2. 1]	J3 59 A1_GND 25 A16+[A122+] 58 A16-[A122-] 24 A1_GND 57 A17+[A123+] 23 A17-[A123-] 56 A1_GND 21 A00[A02] 55 A0_GND 21 A01[A03] 54 A0_GND 20 APF11 53 D_GND 19 P0.4[P1.4] 52 P0.0[P1.0] 18 D_GND	J4 68 A10+[A116+] 34 A10-[A116-] 67 A1_GND 33 A11+[A117+] 66 A11-[A117-] 32 A1_GND 65 A12+[A118+] 31 A12-[A118-] 64 A1_GND 30 A13+[A119+] 63 A13-[A119-] 29 A1_GND 62 A1_SNS0[1] 28 A14+[A120+] 61 A14-[A120-] 27 A1_GND 60 A15+[A121+] 26 A15-[A121-]

Figure 4 TB-68 Terminal Block

- Set a sinewave signal (f=4Hz, Vpp=5V) and a squarewave signal (f=4Hz, Vpp=5V).
- Open Analog Input-->Winform AI Continuous MultiChannel, set the following numbers as shown. This sample program will continuously acquire data from multiple channels.

Figure 5 Continuous MultiChannel Paraments

SampleRate is set by **Sample Rate**

- Samples to Acquire is the samples to be acquired for each channel in one block. The continuous mode will acquire blocks after blocks until Stop button is pressed.
- When start is clicked, it generates a software trigger, which starts the acquisition. The result is shown below.

Figure 6 MultiChannel Continuous Acquisition

8.2.1. Continuous Acquisition

An AI acquisition task will acquire the data continuously until the task is stopped. The PCIe-5111 device will continue acquiring data and save the data in a circular buffer. You specify how many samples to read back by the user buffer's length, if your program does not read the data fast enough, the circular buffer may overflow. In this case, the driver software will throw out an error message.

Tip: User buffer's length 1/10th to 1/4th *SampleRate* is a good start.

8.2.2. Finite Acquisition

In the Finite Acquisition mode, an AI acquisition task will capture specific total number of samples by the parameter, SamplesToAcquire.

You can use the sample program **Analog Input --> Winform AI Finite** to learn more about Finite Acquisition.

8.2.3. Single Point Acquisition

In the Single Acquisition mode, it is to capture a single sample for each acquisition.

You can use sample program: **Analog Input --> Console AI Single Point** to learn more about the single point Acquisition.

8.2.4. Record Acquisition

AI Task will continuously capture the data and then save them to a storage disk. During the capturing process, user can preview the captured data randomly when the capturing process is available. The mode is particularly useful for high-speed acquisition and recording applications.

8.3. Analog Input Terminal Type

The PCIe-5111 provide 3 analog input terminal types:

- Differential (DIFF)
- Referenced Single-Ended (RSE)
- Non-Referenced Single-Ended (NRSE)

The DIFF connection is recommended for ground-referenced signal sources and it is usually better in rejecting the common-mode noise. However, to acquire one input signal, two AI channels are required to form the differential pair. The RSE and NRSE are recommended when the input signal sources are floating signals. In RSE and NRSE modes, these floating signal sources all share the same ground reference (AI_GND). Because of it, the RSE and NRSE modes can acquire twice as many channels than the DIFF mode. Appendix has more details on these 3 modes.

8.3.1. DIFF Mode

The DIFF mode connects signal's positive side to AI's positive input, signal's grounded negative side to AI's negative input as shown in Figure 7. The common noise appears on both positive and negative terminals of the differential amplifier;

thus it will be cancelled out. Therefore, the DIFF mode has better signal-to-noise ratio (SNR). Please see Appendix for more explanations.

Figure 7 Differential Mode for Grounding Signals

Learn by Example 8.3.1

■ Open the program Analog Input-->Winform AI Continuous MultiChannel

Connect the two signal source's positive outputs to PCIe-5111 AI Ch0 (AI0+, Pin #68) and AI Ch1 (AI1+, Pin#33), two negative terminals to AI Ch0 negative (AI0-, Pin#34) and AI Ch1 negative (AI1-, Pin#66) as shown in Figure 3 and Figure 4. (AI0+, AI0-) and (AI1+, AI1-) consist of two pairs of DIFF inputs;

- Choose Differential in **AI Terminal**;
- Set other numbers as shown and click **start**.

				1 -		-		
	PCIe-	5110 Mu	ltichan	nel Con [.]	tinuous	s Data A	cquisitior	1
3. 5	·····				1	- Series 1	Basic Param Configu	ration
							Card ID	5110
3							Slot Number	0
							Channel Count	2
2.5							AI Terminal	Differential
							Sample Rate(Sa/s)	10,000
2							Samples to Acquire	1,000
1.5							Input Range	±10V
1								
							-	
							Start	Stop

Figure 8 Choose Differential in AI Terminal

8.3.2. RSE Mode

In the RSE mode, all input signals' negative sides are connected to the AI ground of Instrumentation Amplifier, as shown in Figure 9. This mode works for measurements from floating sources. The RSE mode is suitable when these two conditions exist:

■ The input signals are floating, meaning they are not connected to the ground

■ When the common mode noise is low, meaning a clean environment.

The RSE mode offers twice as many measurement channels as the DIFF mode. Please see Appendix for more explanations.

Figure 9 RSE Mode for Floating Signals

8.3.3. NRSE Mode

The NRSE mode is recommended for the measurement of ground-referenced signals, as shown in Figure 10. NRSE is also called the pseudo differential mode, because it looks very similar to a DIFF connection. In this mode, the PCIe-5111 device offers a special reference point, AI SENSE. Instead of connecting two grounds directly, signal's ground and PXI device's ground, the input signals' ground is connected to AI SENSE to avoid the ground loop bias. The PCIe-5111 is also designed to better reject the common mode noise than the RSE mode. Therefore, the NRSE model still offers twice many channels as the DIFF mode. Please see Appendix for more explanations.

Figure 10 NRSE Mode for Grounding Signals

Learn by Example 8.3.3

• Open the program **Analog Input-->Winform AI Continuous MultiChannel**.

■ This Example needs two TB-68 terminal blocks, ConnectorO and Connector1 and two cables, which are connected to PCIe-5111. Connect the two signal source's positive outputs to PCIe-5111 AI ChO (AIO+, Pin #68) and AI Ch1 (AI1+, Pin#33), two negative terminals to AI_SENSE 0 (Pin#62) of the first TB-68 and AI_SENSE 1 (Pin#62) of the second TB-68 as shown in Figure 3 and Figure 4. (AIO+, AI_SENSE 0) and (AI1+, AI_SENSE 1) consist of two channels of NRSE inputs.

- Choose the NRSE in **AI Terminal**
- Set other numbers as shown and click **start**.

Figure 11 Choose NRSE In AI Terminal

8.4. Trigger Source

There are 4 trigger types: Immediate trigger, Software trigger, Analog trigger, and Digital trigger. The trigger type is a property and set by driver software.

8.4.1. Immediate trigger

This trigger mode does not require configuration and is triggered immediately when an operation starts. The operation can be AI, AO, DI, DO, CI, CO etc.

Learn by Example 8.4.1

■ Use the same program and connection as in Learn by Example8.2.

	PCIe-	-5110 Mu	ltichanı	nel Cont	inuous	s Data A	Acquisitior	1
3.5	Series 1						Basic Param Configuration	
							Card ID	5110
3							Slot Number	0
							Channel Count	2
2.5							AI Terminal	RSE
							Sample Rate(Sa/s)	10,000
2							Samples to Acquire	5,000
1.5							Input Range	±10V
1								
							Start	Stop
0.5							Start	Jub

Figure 12 Immediate trigger Paraments

With Immediate trigger you can click Start to generate the task instead of sending a trigger signal.

8.4.2. Software Trigger

A software trigger must be configured by the driver software. The trigger starts when a trigger software routine is called.

Learn by Example 8.4.2

■ Connect the signal source's positive terminal to PCIe-5111 AI Ch0 (AI0+, Pin#68), the negative terminal to the ground (AI_GND, Pin#67) as shown in Figure 3 and Figure 4. (AI0+, AI_GND) consists of a RSE input.

■ Set a sinewave signal (f=4Hz, Vpp=5V).

Open Analog Input-->Winform AI Continuous Soft Trigger, set the following numbers as shown.

Click **Start** to run the task.

		PCIe-5 Data	110 Sin Acquisi	gle Cha ition(S	nnel Contir oft Trigger	nuous ·)		
-						Basic Param Configu	ration	
	[Series1	Card ID	5110	
3						Slot Number	0	
						Channel ID	0	
5						AI Terminal	RSE	
						Sample Rate(Sa/s)	10,000	
2						Samples to Acquire	10,000	
						Input Range	±10V	
. 5								
1								
5						Start Send Sof	t Trigger	St

Figure 13 Software trigger Paraments

Data will not be acquired until there is a positive signal from Software Trigger when Send Soft Trigger is clicked.

After sending the trigger signal, the result will be like this:

8.4.3. External Analog Trigger

You can assign one of measurement channels as the analog trigger source. PCIe-5111 provides three analog trigger modes:

- Edge comparator,
- Hysteresis comparator,
- Window comparator.

Analog trigger threshold range can be arbitrarily selected in the effective range of the selected channel. When setting the threshold, please pay attention to the physical unit currently in use.

Edge comparator

In the Edge comparator, there are two trigger conditions: *Rising Slope Trigger* and *Falling Slope Trigger*.

Rising Slope Trigger: The Edge comparator output is high when the signal goes above the threshold; the output is low when the signal goes below the threshold as shown in Figure 15.

Falling Slope Trigger: The Edge comparator output is high when the signal goes below the threshold; the output is low when the signal goes above the threshold as shown in Figure 16.

Figure 15 Rising Slope Trigger

Hysteresis Comparator

The hysteresis comparator is designed for preventing spurious triggering. You can set hysteresis region by setting high threshold and low threshold. There are two trigger conditions: *Hysteresis with Rising Slope Trigger* and *Hysteresis with Falling Slope Trigger*.

Hysteresis with Rising Slope Trigger: The Hysteresis comparator output is high when the signal must first be below the low threshold, then goes above the high threshold. The output will change to low when the signal goes below the low threshold as shown in Figure 17.

Hysteresis with Falling Slope Trigger: The Hysteresis comparator output is high when the signal must first be above the high threshold, then goes below the low threshold. The output will change to low when the signal goes above the high threshold as shown in Figure 18.

Figure 17 Hysteresis with Rising Slope Trigger

Figure 18 Hysteresis with Falling Slope Trigger

Window comparator

The window comparator is designed to acquire signal from interesting window by setting High Threshold and Low Threshold. There are two trigger conditions: *Entering Window Trigger* and *Leaving Window Trigger*.

Entering Window Trigger: The window comparator output is high when the signal enters the window defined by the *Low Threshold* and *High Threshold*. The output will change to low when the signal leaves the window as shown in Figure 19.

Leaving Window Trigger: The window comparator output is high when the signal leaves the window defined by the *Low Threshold* and *High Threshold*. The output will change to low when the signal enters the window as shown in Figure 20 Leaving Window Trigger.

Figure 20 Leaving Window Trigger

Learn by Example 8.4.3

■ Connect the signal source's positive terminal to PCIe-5111 AI Ch0 (AI0+, Pin#68), the negative terminal to the ground (AI_GND, Pin#67) as shown in Figure 3 and Figure 4. (AI0+, AI_GND) consists of a RSE input.

■ Set a sinewave signal (f=4Hz, Vpp=5V).

Open Analog Input-->Winform AI Continuous Analog Trigger, set the

following numbers as shown.

	I D	PCIe-511 ata Acg	0 Sing uisitic	le Chann on (Anal	el Continu og Trigger	nous r)	
						Basic Param Config	uration
3.6					Serie	Card ID	5110
						Slot number	0
3						Channel ID	0
						AI Terminal	RSE
						Sample Rate(Sa/s)	10,000
2.5						Samples to Acquire	10,000
						Input Range	±10V
2						Trigger Param Conf	iguration
						Trigger Source	Channel_0
						Trigger Comparator	Edge
1.5						Trigger Edge	Rising
1						Threshold	2.0
0.5							
0	200	400	600	800	1000	Start	Stop

Figure 21 Analog Trigger Paraments

- > Modes of the Analog Trigger are set by **Trigger Comparator.** Set it to **Edge**.
- > The edge of *EdgeComparator* set by **Trigger Edge**. (**Rising** and **Falling**)
- Trigger source can be any channel of PCIe-5111 analog input. Set it to Channel_0.
- According to the rules of **Rising** mentioned above, the signal acquisition will not start until it raises to 2.0 V, which is set by **Threshold** above.
- Click Start, a message will appear in the lower left corner:

Waiting for the trigger signal

Figure 22 Waiting For Trigger

This indicates the data acquisition will start only after a triggering event. In this example a trigger signal will occur when the *hysteresis comparator* meets the condition explained in 8.4.3.

■ The result is shown below:

Figure 23 Analog Trigger Acquisition

> The signal starts at 2.0V, which matches the Edge mode set before.

8.4.4. External Digital Trigger

PCIe-5100 supports different external digital trigger sources from PXI Trigger bus (PXI_TRIG<0..7>), PXI_STAR and connectors of front panel (PFI). The high pulse width of digital trigger signal must be longer than 20 ns for effective trigger. The module will monitor the signal on digital trigger source and wait for the rising edge or falling edge of digital signal which depending on the set trigger condition, then cause the module to acquire the data as shown in Figure 24

Figure 24 External Digital Trigger

Learn by Example 8.4.4

- Connect the signal source two positive terminals to PCIe-5111 AI Ch0, (AIO+, Pin #68) and digital trigger source (PFI 0, Pin#11), two negative terminals to the ground of analog input (AI_GND, Pin#67) and the ground of digital input/output (DGND, Pin#44) as shown in Figure 3 and Figure 4 (AIO+, AI_GND) consists of a RSE input. (PFI0, DGND) provides the trigger signal.
- Set a sinewave signal (f=4Hz, Vpp=5V) and a squarewave signal (f=4Hz, Vpp=5V).
- Open Analog Input-->Winform AI Continuous Digital Trigger, set the following numbers as shown.

		PCle-5 Data A	cquisi	ing le tion (Chann Digit	<u>el C</u> onti cal Trig	ger)		
3.5						- Series1	Basic Param Config	uration	
							Card ID	5110	
3							Slot Number	0	
Ŭ							Channel ID	0	
0.5							AI Terminal	RSE	
2.0							Sample Rate(Sa/s)	10,000	
							Samples to Acquire	10,000	
2							Input Range	±10V	
1.5							-Trigger Param Conf	iguration	
							Trigger Source	PFIO	
1							Trigger Edge	Rising	
0.5	200	400		900	1000		1		

Trigger Source must match the pin on 5110.

> There are two **Trigger Edge**: **Rising** and **Falling**.

■ Click **Start** and the result shows below:

	PCle-5 Data <u>A</u> e	cquisi	ingle tion (Channe Digita	l Conti 1 Trig	nuous ger)		
3.5	 			,	Series 1	Basic Param Config	uration	
					Jenes I	Card ID	5110	
2						Slot Number	0	
J						Channel ID	0	
0.5						AI Terminal	RSE	
2.0						Sample Rate(Sa/s)	10,000	
						Samples to Acquire	10,000	_
2						Input Range	±10V	
1.5	 					-Trigger Param Conf	iguration	
						Trigger Source	PFIO	
1	 					Trigger Edge	Rising	
0.5	 							

Figure 26 Digital Trigger Acquisition

Since the squarewave is used for the digital trigger source, when a rising edge of the squarewave occurs, the digital trigger will be activated, and the data acquisition will start.

8.5. Trigger Mode

The PCIe-5111's analog inputs support several trigger modes: start trigger, reference trigger, and re-trigger.

8.5.1. Start Trigger

In this mode, data acquisition begins immediately after the trigger. This trigger mode is suitable for continuous acquisition and finite acquisition. As shown in Figure 27.

Figure 27 Start Trigger

8.5.2. Reference Trigger

This trigger mode is suitable for finite acquisition. In this mode, user can set the number of pre-trigger samples. The default number of pre-trigger points is 0. First you need to start the data acquisition. When the reference trigger condition is met, the routine will return the acquired data points. If when the points less than the pre-trigger samples, the trigger signal be ignored. An example is show below.

Example

- Total samples: 1000;
- Channel Count: 1
- Pre-trigger samples: 10;
- After triggering, it returns total 1000 samples, 10 being pre-triggered, 990 after triggering

The principle is shown in Figure 28.

Figure 28 Reference Trigger

8.5.3. ReTrigger

PCIe-5111 supports retrigger mode. In the retrigger mode, you can set the number of retrigger and the length of each acquisition. Assuming that the number of re triggers is n and the length of each trigger acquisition is m, the length of all acquisition data is n * m * channelcount. Show in Figure 29.

When the number of retrigger is - 1, it is infinite.

Learn by Example 8.5

Connect the signal source's positive terminal to PCIe-5111 AI Ch0 (AIO+, Pin#68), the negative terminal to the ground (AI_GND, Pin#67) as shown in Figure 3 and Figure 4. (AIO+, AI_GND) consists of an RSE input.

- Set a sinewave signal (f=4Hz, Vpp=5V).
- Open Analog Input-->Winform AI Finite Analog Trigger, set the following numbers as shown.

	PCIe- Data Ac	5110 Sin cquisiti	gle Char on (Ana	nnel Finit log Trigge	e er)	
2.5					-Basic Paran Configu	ration
3.5				- Seri	Card ID	5110
					Slot Number	0
					Channel ID	0
3					AI Terminal	RSE
					Sample Rate(Sa/s)	10,000
					Samples to Acquire	10,000
2.0					Input Range	±10V
					Trigger Param Confi	guration
2	 				Trigger Mode	Start
					Trigger Source	Channel_0
					Trigger Comparator	Hysteresis
1.5	 				Trigger Edge	Rising
					High Threshold (V)	2.0
					Low Threshold (V)	0.0
1					Retrigger Count	1
0.5	 					

Figure 30 Retrigger Paraments

- You can use three different kinds of triggers in this program as mentioned in 8.5. Start Trigger and Reference Trigger can be set by Trigger Mode. For ReTrigger can be used by changing the numbers in Retrigger Count.
- > PretriggerSamples is set by **Pretrigger Samples**.
- Now the trigger is a Start Trigger. Click Start to begin the data acquisition, the result is shown below:

Figure 31 Retrigger In Start Trigger Mode

Now change the Trigger Mode to Reference mode with Pretrigger Samples 1000. A different result shows below:

Figure 32 Retrigger In Reference Trigger Mode

You can see the horizontal movement between two signals due to the change of
 Trigger Mode.

Now change the mode of trigger to *Retrigger* through giving **Retrigger Count** a number other than 0 and click **Start**. A message will appear in the lower left corner: "Complete the nth trigger".

Complete the 2th trigger

Figure 33 Complete Retrigger Count

> It shows the acquisition process through every trigger signal.

8.6. AO Operations

The PCIe-5111 AO provides 16-bit simultaneous outputs. The analog output has three modes of operation: Finite, ContinuousWrapping, and ContinuousNoWrapping.

8.6.1. Finite Output

The finite output requires the user to write a piece of data. After starting the AO, it starts to output the written data until the output is completed.

Learn by Example 8.6.1

- Connect PCIe-5111 AO Ch0 (AO0, Pin #22) to AI Ch0 (AI0+, Pin#68), Ground of AO0 (AO_GND, Pin#55) to Ground of AI0 (AI_GND, Pin#67). (AI0+, AI_GND) consists of a RSE input; (AO0, AO_GND) consists of an output.
- PCIe-5111 sends an analog signal through (AOO, AO_GND) and reads back the signal from (AIO+, AI_GND).
- Open Analog Input-->Winform AI Continuous, set the following numbers as shown.

I	PCIe-511	0 Singl	e Chann	el Cont	inuous	Data A	cquisition	1
3. 5						Series1	Basic Param Configu	tration
							Slot Number	0
3							Channel ID	0
							AI Terminal	RSE
2.5							Sample Clock	Internal
							External Clock	PFI2
2							Sample Rate(Sa/s)	10,000
							Samples to Acquire	3,000
1.5							Input Range	±10V
,								
1								

- Click **Start** to start the data acquisition.
- Open Analog Output-->Winform AO Finite, set the following numbers as shown:

Ø PCIe	e-5110 Single (Channel Finite	e Mode Outpu	t				-		×
]	PCIe-	-5110	Singl	e C	Channel	Finite Ou	ıtput		
3.5							-Basic Param Conf	iguration		
3.8-						Series1	Card ID	5110		\sim
							Slot Number	0		\sim
3-							Channel ID	0		\sim
							Output Range	±10V		\sim
25-							Update Rate(Sa,	(_s) 500,000		
							Samples to Upda	te 250,000		•
2-										
							-Waveform Configu	ration		
							Wave Type	SineWave		\sim
1.5-							Wave Amplitude	5		*
							Wave Frequency	10		÷
1 -										
							Start	St	OD	
0.5-	200	0 40	0 600	800	10	i 000	Start		-	

Click **Start** to generate a **SineWave**. The generated signal is shown below:

Figure 36 AO Finite Signal

And the received signal is shown below.

> The analog signal is successfully generated and received by PCIe-5111.

8.6.2. Continuous NoWrappping Output

The continuous acyclic output needs to write a piece of data before starting the AO. After the AO starts, user needs to continuously write new data to ensure the continuous output of the AO.

Learn by Example 8.6.2

- Connect PCIe-5111 AO Ch0 (AO0, Pin #22) to AI Ch0 (AI0+, Pin#68), Ground of AO0 (AO_GND, Pin#55) to Ground of AI0 (AI_GND, Pin#67). (AI0+, AI_GND) consists of a RSE input; (AO0, AO_GND) consists of an output.
- PCIe-5111 sends an analog signal through (AOO, AO_GND) and reads back the signal from (AIO+, AI_GND).
- Open Analog Input-->Winform AI Continuous, set the following numbers as shown.

Cle-5110 Sin	ngle Channel Continuous Moo	de Data Acquisition					– 🗆	
	PCIe-5110	Single	Channe1	Contir	nuous Da	ta Acquisitio	n	
3.5						Series1 Basic Param Conf	iguration 5110	
						Slot Number	0	
3						Channel ID	0	
						AI Terminal	RSE	
2.5						Sample Clock	Internal	
						External Clock	PFI2	
2						Sample Rate(Sa/s) 10,000	
						Samples to Acqui	re 3,000	
1.5						Input Range	±10V	
1								
0.5	200	400	600	800	1000	Start	Stop	

Figure 38 AI Continuous Paraments

- Click **Start** to start the data acquisition.
- Open Analog Output-->Winform AO Continuous NoWrapping, set the following numbers as shown:

PCIe-5110 9	ingle Channel Finit	te Mode Outpu	t			
	PCIe ⁻	-5110	Single	Channe1	Finite Out	cput
					-Basic Param Configu	ration
3.5				Series1	Card ID	5110 ~
					Slot Number	0
3					Channel ID	0
					Output Range	±10V ~
					Update Rate(Sa/s)	500,000
					Samples to Update	250,000
2					W C a C'	
					Waveform Configurat	SineWere
					wave lype	Sinewave
1.5					Wave Amplitude	5
					Wave Frequency	10
1						
					Stort	Stop
0.5	200 4	+ + 00 600	800	1000	Juart	

Figure 39 AO ContinuousNoWrapping Output Paraments

- In no wrapping analog output you can change the parameter of the signal whenever you want in Waveform Configuration when generating the wave. After the configuration you should click Update to apply the changes.
- Click **Start** to generate a sine wave first. The result is shown below.

PCIe-5110 Single Channel Finite Mode Output		– 🗆 X
PCIe-5110	Single Channel F	Finite Output
		Basic Param Configuration
6	Series 1	Card ID 5110 ~
		Slot Number 0 🗸
▲ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	<u>}</u>	Channel ID 0 ~
		Output Range $\pm 10V$ \checkmark
		Update Rate(Sa/s) 500,000
		Samples to Update 250,000
0		Waveform Configuration
		Wave Type SineWave ~
-2		Wave Amplitude 5
		wave Frequency
V V V	VVV	
	200000 250000	Start Stop

Figure 40 AO ContinuousNoWrapping Signal

■ And the received signal is shown below.

Now change the Wave Type to SquareWave and click Update to generate it. The result is shown below.

PCIe-5110 Single Ch	annel Continuous NoWrapping	Output				- 🗆 X
PCIe	-5110 Sing]	e Channel	Contin	uous NoWr	apping (Output
â				Basic Param Configurati	on	
0			Series1	Card ID	5110	\sim
				Slot Number	0	\sim
4				Channel ID	0	\sim
2				Update Rate(Sa/s)	1,000,000	* *
				Output Range	±10V	~
0			-1	Waveform Configuration		
				Wave Type	SquareWave	\sim
-2				Wave Amplitude	5	•
				Wave Frequency	10	-
-4					L	
-6				Start	Update	Stop
0 200000	400000 600000	800000 1000000				

■ And the received signal is shown below.

> The analog signal is successfully generated and received by PCIe-5111.

8.6.3. Continuous Wrapping Output

The continuous loop output first writes a piece of data before starting the AO. After the AO starts, the board will repeatedly output this data until user sends a stop command.

Learn by Example 8.6.3

- Connect PCIe-5111 AO Ch0 (AO0, Pin #22) to AI Ch0 (AI0+, Pin#68), Ground of AO0 (AO_GND, Pin#55) to Ground of AI0 (AI_GND, Pin#67). (AI0+, AI_GND) consists of a RSE input; (AO0, AO_GND) consists of an output.
- PCIe-5111 sends an analog signal through (AOO, AO_GND) and reads back the signal from (AIO+, AI_GND).
- Open Analog Input-->Winform AI Continuous, set the following numbers as shown.

			~		1				
	PC1e-	-5110	Single	e Channe	el Cont	inuous	Data Ao	cquisition	l
3. 5 -		T					Series1	Basic Param Configu Card ID	ration 5110
								Slot Number	0
3								Channel ID	0
								AI Terminal	RSE
2.5								Sample Clock	Internal
								External Clock	PFI2
2								Sample Rate(Sa/s)	10,000
								Samples to Acquire	3,000
1.5								Input Range	±10V
1									
0.5									
0.8	2	00	400	600	800	1000		Start	Stop

Figure 44 AI Continuous Paraments

- Click **Start** to start the data acquisition.
- Open Analog Output-->Winform AO Continuous Wrapping, set the numbers as shown.

PCIe-5110 Single C	Channel Continuous	Wrapping Output			- 🗆 X
PCIe-5	5110 Si	ngle Cha	nnel Co	ntinuous Wr	apping Output
6			Series 1	Basic Param Configur Card ID Slot Number Channel ID Update Rate(Sa/s)	ation 5110 ~ 0 ~ 1,000,000 ÷
0				Output Range Waveform Configurati Wave Type Wave Amplitude	± 10V ~
	400000 60	0000 800000 10		wave frequency Start	Stop

Figure 45 AO Continuous Wrapping Paraments

■ Click **Start** to generate the signal. The result is shown below.

PCIe-5110 Single Channel Continuous Wrapping Output	– 🗆 X
PCIe-5110 Single Channel Cont	tinuous Wrapping Output
Series 1	Basic Param Configuration Card ID 5110 Slot Number 0 Channel ID 0 Update Rate (Sa/s) 1,000,000 Update Range ±10V Wave form Configuration Wave Type SineWave Wave Amplitude 5 Wave Frequency 10 Start Stop

Figure 46 AO Continuous Wrapping Signal

And the received signal is shown below.

Figure 47 AI Acquisition AO Signal

> The analog signal is successfully generated and received by PCIe-5111.

8.7. Digital I/O Operations

The PCIe-5111 provides powerful programmable digital I/O functions.

8.7.1. Static DI/DO

Programmable I/O supports static TTL, 6 ports (0,1,2,3,4,5) which are in total 48 digital I/O channels. User can acess these I / O information through software polling.

Learn by Example 8.7.1

- In this example PCIe-5111 outputs a digital signal by its DO function and reads it back by its DI function.
- Connect Connector1 of PCIe-5111 to the TB-68 terminal block according to Figure 4.
- Connect Port 1/Line 0~7 (P1.0~P1.7) to Port 2/Line 0~7 (P2.1~2.7).PCIe-5111 sends a digital signal through Port 1 and reads the signal back from Port 2.
- Open the first program **Digital Output-->Winform DO SinglePoint.**

- Select port 1 for Digital Output, Set Line 1,3,5 in High-Level positions, make sure all other lines are in Low-Level positions. Click Start to generate the High-Levels as shown.
- Open the second program **Digital Input-->Winform DI SinglePoint**.
- Select port 2 for Digital Input as shown, and click Check DI Status. The result is shown below.

🚸 PCIe-5110 Single Mode Digital Sig	ınal Outj		×
PCIe ⁻	-51	10 Single Digital Output	
Basic Param Configuration Slot Number 0	port0	Line (0~7) HighLevel (true) LowLevel (false)	
Card ID 5110 V port0 port1 port2 port3	portl	Line (0~7) HighLevel (true) LowLevel (false)	
port4	port2	Line (0 [°] 7) HighLevel (true) LowLevel (false)	
Start Stop	port3	Line (0°7) HighLevel(true) LowLevel(false)	
	port4	Line (0 [°] 7) HighLevel (true) LowLevel (false)	
	port5	Line (0°7) HighLevel (true) LowLevel (false)	

Figure 48 Single Digital Output

PCIe-5110 Single Mode Digital Signal Input					-	-		×
PCIe-5110 Single	Digita	1	Sig	nal	In	ıpu	t	
Basic Param Configuration								
Card ID 5110 ~						al	L7	
port0 port1	ы •	19		L12	L13	L14	L15	
port2 port3 port4 port5	L16 1	L17 :	L18 L19	L20	121		123	
Check DI Status	L24	125		L28	129	L30	L31	
	L32	L33	L34 L35	L36	L37	L38	L39	
	L40	L41	L42 L43	L44	L45	1 46	L47	

Figure 49 Single Digital Input

> The result matches the high and low levels set before.

8.7.2. Dynamic DI/DO

The PCIe-5111 supports both dynamic DI/DO operation with a maximum sample rate (update rate) of up to 10MHz. User can acquire or output digital waveforms in this way.

Learn by Example 8.7.2

- In this example PCIe-5111 outputs a squarewave by its DO function and reads it back by its DI function.
- Connect Connector1 of PCIe-5111
- Connect PCIe-5111/5111 Port 1/Line 0 (P1.0,pin#52) to Port 2/Line 0(P2.0,pin #11)
- PCIe-5111 sends digital signals through Port 1/Port 0 and reads them back from Port 2/Port 1
- Open Digital Input-->Winform DI Continuous and set the numbers as shown. Select port 2(PCIe-5110/5111) or port 1(PCIe-5110/5111).

PCIe-5110 Conti	PCIe-51	10 Contin	uous Digital	Signal Input
3.5 T	1		Series 1	Basic Param Configuration
3				Card ID 5110 ~
-				Slot Number 0 ~
2.5				Sample Rate
2	+			Samples to Acquire 10,000
1.5				□ port0 □ port1
1				<pre>✓ port2 port3</pre>
0.5	200 400	600 800	1000	Start Stop

Figure 50 DI Continuous Paraments

- Click **Start** to begin the data acquisition.
- Open Digital Output--> Winform DO Continuous NoWrapping and set the numbers as shown.

	PCIe-	5110 Cont	inuous NoWrapp	ing Digita	al Signal Output
300				- Series1	-Basic Param Configuration
250			·····		5110 V 0 V 100,000
200					Channel Configuration Signal Frequency Duty Cycle
50					Port0 1,000 \$ 0.5 \$
100				b	▶ Port1 4 • 0.5 •
					Port2 5,000
E0					10/00 V

Click **Start** to generate the signal. The result is shown below.

 In program Winform DI Continuous, you can see the acquired signal. Select port 1(PCle-5110/5111) or port 0(PCle-5110/5111).

< PCIe-5110 Conti	inuous Mode Digital Signal	Input			_	×
	PCIe-5110	Continuous	Digital	Signal	Input	
255. 1			Series1	-Basic Param Con	figuration	
254.9		·····		Card ID	5110	\sim
254. 7				Slot Number Sample Rate	0	~
254. 5				Samples to Acqu	ire 10,000	×
254. 3				port0 port1		
254. 1				port2		
253.9	2000 4000 600			Start	Stop	
Reading in data						

> The digital signal is successfully generated and acquired by PCIe-5111.

8.8. Counter Input Operations

The PCIe-5111 has four or two identical 32 bits timers/counters.

Figure 53 Counter Terminal

Each counter has seven input terminals and one output terminal, and these terminals have different functions in different counter input application types, including:

- Edge Counting
- Pulse Measurement
- Frequency Measurement
- Period Measurement
- Two-Edge Separation
- Quadrature Encoder (X1, X2, X4)
- Two-Pulse Encoder

For buffered acquisition, each counter has a separate DDR storage space and requires a sample clock.

For each counter input application type, the measured signal needs to be connected to different terminals, as shown in the following table.

Measured Signal	Terminal
Edge Counting	Source
Pulse Measurement	Gate
Frequency Measurement	Gate
Period Measurement	Gate
Two-Edge Separation	Gate、Aux
Quadrature Encoder (X1, X2, X4)	A、B、Z
Two-Pulse Encoder	A _N B

Figure 54 Counter Signal Wiring Instruction

8.8.1. Edge Counting

The counter counts the number of active edges of input signal.

Timing

1) Single Mode

The count value is written to the register on each rising edge or falling edge of the signal to measure as shown in Figure 55.

Figure 55 Simple Edge Counting in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock

The count value is stored into the buffer on each rising edge or falling edge of the sample clock as shown in Figure 56.

Figure 56 Buffered Edge Counting with Internal Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count value is stored into the buffer on each rising edge or falling edge of the signal to measure as shown in Figure 57.

Figure 57 Simple Edge Counting with Implicit SampleClk

Counting Direction

User can control the counting direction through software configuration or by an input signal with Gate terminal. When using an input signal to control the counting direction, the counter counts up when the signal is high and counts down when the signal is low as shown in Figure 58.

Learn by Examples8.8.1

Connect the signal source's positive terminal of a signal source to PCIe-5111 counterO's edge counting source (CTR0_Source/A, Pin#11), negative terminal to the ground (DGND, Pin#44) as shown in Figure 3 and Figure 4. (CTR0_Source, DGND) consists of an edge counting counter input and they share the same ground.

■ Set a squarewave signal (f=1Hz, Vpp=5V).

Single Mode

Open Counter Input-->Winform CI Single EdgeCounting, set the following numbers as shown:

PCIe-5110 Single Mode E	EdgeCounting				_		×
PC	Ie-5110 Sin	gle I	EdgeCoun	iting	;		
-Basic Param Configuratio	on	5110_5111					
Slot Number	Counter ID	Pin	Signal Name	Pin	Signa	Name	
0 ~	0 ~	11	CTR0_Source/A	42	CTR1	Source	e/A
Counter Direction	Init Count	10	CTR0_Gate/Z	41	CTR1	Gate/Z	
Up V	•	43	CTR0_AUX/B	6	CTR1	AUX/B	
Count Result		2	CTR0_OUT	40	CTR1	OUT	
Counter Value 0		5	CTR2_Source/A	3	CTR3	Source	e/A
		38	CTR2_Gate/Z	45	CTR3	Gate/Z	
		37	CTR2_AUX/B	46	CTR3	AUX/B	
Start	Stop	1	CTR2_OUT	39	CTR3	OUT	

Figure 59 EdgeCounting For Single Mode

- > Counter Direction is set by **Counter Direction**.
- > The table in the sample program is a connection diagram for your convenience.
 - The *rising edge counter* works when **Start** is clicked.
 - The result is shown by Counter Value. In this example the Counter Value increases by 1 every second for a 1Hz sinewave.

Finite/Continuous Mode

- Change the squarewave frequency to 50 Hz.
- Open Counter Input-->Winform Cl Finite/Continuous EdgeCounting, set the following numbers as shown:

@ PCle-5110	PCIe-5110 Finite Mode EdgeCounting								-	×
	PC	le-	5110 Finite	e E	dge(Coun	ting	;		
-Basic Param	n Configuration —			Coun	terValues					
Slot Number	0	\sim	Sample Rate							
Counter ID	0	\sim	100							
Counter Dire	ection Up	\sim	Samples to Acquire							
Clock Source	e Internal	~	10							
Init Count	0	•								
	-									
	Start		Stop							
5110_5111										
Pin	Signal Name	Pin	Signal Name							
11	CTR0_Source/A	42	CTR1_Source/A							
10	CTR0_Gate/Z	41	CTR1_Gate/Z							
43	CTR0_AUX/B	6	CTR1_AUX/B							
2	CTR0_OUT	40	CTR1_OUT							
5	CTR2_Source/A	3	CTR3_Source/A							
38	CTR2_Gate/Z	45	CTR3_Gate/Z							
37	CTR2_AUX/B	46	CTR3_AUX/B							
1	CTR2_OUT	39	CTR3_OUT							

Figure 60 EdgeCounting For Finite Mode

- > The table in the sample program is a connection diagram for your convenience.
- Counter Direction is set by **Counter Direction**.
- There are two clock sources in PCIe-5111 Internal and Implicit: This example uses Internal mode set by Clock Source.
 - Click **Start** to start counting by rising edge. The result is shown below:

CounterValues
0
1
1
2
2
3
3
4
4
5

Figure 61 Counter Values For Internal Clock

- > The numbers are stored in a buffer **CounterValues**.
- Change the **Clock Source** to **Implicit**:

CounterValues
1
2
3
4
5
6
7
8
9
10

Figure 62 Counter Values For Implicit Clock

- > The numbers are stored in a buffer **CounterValues**.
- The counter values are different as before because of the change from Clock Source.

8.8.2. Pulse Measurement

The counter measures the high-level and low-level duration of signal.

Timing

1) Single Mode

The count value of the duration of the high-level or low-level is written to the register on each rising or falling edge of the pulse to measure, as shown in Figure 63.

Figure 63 Pulse Measurement in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock

The count value of the duration of the high or low level is stored into the buffer on each rising or falling edge of the sample clock, as shown in Figure 64.

Figure 64 Pulse Measurement with Internal SampleClk

3) Finite/Continuous Mode with Implicit Sample Clock

The count value of the duration of the high-level or low-level is stored into the buffer on each rising or falling edge of the pulse to measure, as shown in Figure 65.

Figure 65 Pulse Measurement with Implicit SampleClk

Learn by Examples 8.8.2

- Connect the signal source's positive terminal to PCIe-5111 counterO's pulse measure source (CTR0_Gate/Z, Pin#10), negative terminal to the ground (DGND, Pin#44) as shown in Figure 3 and Figure 4. (CTR0_Gate/Z, DGND) consists of a pulse measure counter input and they share the same ground.
 - Set a squarewave signal (f=1Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

Open Counter Input-->Winform CI Single PulseMeasure, set the following numbers as shown:

PCIe-5110 Single Mode Pulse Meas	ure				- 🗆 X				
PCIe-5110 Single Pulse Measure									
-Basic Param Configuration	Measure Result	5110_5111							
Slot Number 0 ~	High Pulse Measure(S)	Pin	Signal Name	Pin	Signal Name				
	0	11	CTR0_Source/A	42	CTR1_Source/A				
Counter ID 0 ~	Low Pulse Measure(S)	10	CTR0_Gate/Z	41	CTR1_Gate/Z				
		43	CTR0_AUX/B	6	CTR1_AUX/B				
Measure Type PulseMeasure		2	CTR0_OUT	40	CTR1_OUT				
		5	CTR2_Source/A	3	CTR3_Source/A				
		38	CTR2_Gate/Z	45	CTR3_Gate/Z				
Start	Chan	37	CTR2_AUX/B	46	CTR3_AUX/B				
	Stop	1	CTR2_OUT	39	CTR3_OUT				

Figure 66 Pulse Measure For Single Mode

- > The table in the sample program is a connection diagram for your convenience.
- Click Start to start measuring the pulses. The result is shown by High Pulse
 Measure(S) and Low Pulse Measure(S):

Ø PCIe-5110 Single Mode Pulse Meas	ure				- 🗆 X					
PCIe-5110 Single Pulse Measure										
-Basic Param Configuration	Measure Result	5110_5111								
Slot Number 0 🗸	High Pulse Measure(S)	Pin	Signal Name	Pin	Signal Name					
	0.4999926	11	CTR0_Source/A	42	CTR1_Source/A					
Counter ID 0 ~	Low Pulse Measure(S)	10	CTR0_Gate/Z	41	CTR1_Gate/Z					
		43	CTR0_AUX/B	6	CTR1_AUX/B					
Measure Type PulseMeasure	0.499992035	2	CTR0_OUT	40	CTR1_OUT					
		5	CTR2_Source/A	3	CTR3_Source/A					
		38	CTR2_Gate/Z	45	CTR3_Gate/Z					
Start	Ston	37	CTR2_AUX/B	46	CTR3_AUX/B					
	stop	1	CTR2_OUT	39	CTR3_OUT					

The numbers show the duration of High/Low Pulse in one signal period and match the duty cycle set before.

Finite/Continuous Mode

- Change the frequency of Squarewave to 50 Hz.
- Open Counter Input-->Winform Cl Finite/Continuous PulseMeasure, set the following numbers as shown:

	🙆 PCIe-5110) Finite Mode Pulse M	easure			- D X
		PCTe	-511	0 Finite	Pulse Mea	sure
-	Basic Param	Configuration			High Pulse Measurea(S)	Low Pulse Measurea(S)
	Slot Numbe	r 0	∼ Samp	ole Rate		
	Counter ID	0	~ 100			
	Measure Ty	pe PulseMeasure	Samp	oles to Acquire		
	Clock Sour	ce Internal	~ 10			
		Start	S	ton		
		Start	5	top		
1	5110_5111					
	Pin	Signal Name	Pin	Signal Name		
	11	CTR0_Source/A	42	CTR1_Source/A		
	10	CTR0_Gate/Z	41	CTR1_Gate/Z		
	43	CTR0_AUX/B	6	CTR1_AUX/B		
	2	CTR0_OUT	40	CTR1_OUT		
	5	CTR2_Source/A	3	CTR3_Source/A		
	38	CTR2_Gate/Z	45	CTR3_Gate/Z		
	37	CTR2_AUX/B	46	CTR3_AUX/B		
	1	CTR2_OUT	39	CTR3_OUT		

Figure 68 Pulse Measure For Finite Mode

- > The table in the sample program is a connection diagram for your convenience.
- Click Start to begin the finite/continuous pulse measurement. The result is shown below:

High Pulse Measurea(S)	Low Pulse Measurea(S)
0	0
0.009999835	0
0.009999835	0.009999865
0.009999835	0.009999865
0.009999835	0.00999986
0.009999835	0.00999986
0.009999835	0.009999865
0.009999835	0.009999865
0.009999835	0.009999865
0.009999835	0.009999865

Figure 69 Pulse Measure Values For Finite Mode

- The numbers show the duration of High/Low Pulse in one signal period and match the duty cycle set before.
- Please refer to Learn by Examples8.8.1 Finite/Continuous Mode about the difference between Internal and Implicit.

8.8.3. Frequency Measurement

The counter measures the frequency of signal to measure.

Timing

1) Single Mode

Frequency Measurement without sample clock is actually using Pulse Width Measurement internally, refer to chapter 8.8.2 for more information.

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the HighTick $(tick_h)$, LowTick $(tick_l)$ values and known frequency of the timebase (f_{base}) according to the formula 1 and return the result to the user.

$$f_x = f_{base} \times \frac{1}{tick_h + tick_l}$$

To configure the counter to work in this mode, set JY5111CITask.Mode to CIMode.Single.

2) Finite/Continuous Mode with Internal Sample Clock (Averaging)

Between every two rising edges of the sample clock, the counter counts the numbers of full periods (T1) of the signal to measure, and the number of rising edges of timebase (T2) during those full periods. These two values are stored into the buffer on each rising edge of the sample clock, as shown in Figure 70.

Figure 70 Frequency Measurement with Internal Sample Clock

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the buffered values and known frequency of the timebase (f_{base}) by using following formula and return the result to user.

$$f_x = f_{base} \times \frac{T1}{T2}$$

3) Finite/Continuous Mode with Implicit Sample Clock

Frequency Measurement with implicit sample clock is actually using Pulse Measurement internally. refer to chapter 8.8.2 for more information.

Every time the user reads the data, driver will automatically calculate the frequency (f_x) according to the HighTick (T_h) and LowTick (T_l) values according to the formula 1 and return the result to the user.

$$f_x = \frac{1}{T_h + T_l}$$

Learn by Examples 8.8.3

Connect the signal source's positive terminal to PCIe-5111 counter0's frequency measure source (CTR0_Gate/Z, Pin#10), negative terminal to the ground (DGND,

Pin#44) as shown in Figure 3 and Figure 4. (CTR0_Gate/Z, DGND) consists of a frequency measure counter input and they share the same ground.

■ Set a squarewave signal (f=50Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

Open Counter Input-->Winform CI Single Frequency Measure and click Start. The result is shown below by Frequency Measure (Hz):

PCIe-5110 Single Mode Frequency Mea	sure				_		×
PCIe-	5110 Single	Freq	uency Mea	isure			
-Basic Param Configuration	Measure Result	5110_5111					
Slot Number $_{0}$ \sim		Pin	Signal Name	Pin	Signal	Name	
	Frequency Measure(Hz)	11	CTR0_Source/A	42	CTR1_	Source	/A
Counter ID 0 \sim	50.0007500112502	10	CTR0_Gate/Z	41	CTR1_	Gate/Z	
		43	CTR0_AUX/B	6	CTR1_	AUX/B	
Measure Type FrequencyMeasure		2	CTR0_OUT	40	CTR1_	OUT	
		5	CTR2_Source/A	3	CTR3	Source	/A
		38	CTR2_Gate/Z	45	CTR3	Gate/Z	
Chant	4 - M	37	CTR2_AUX/B	46	CTR3	AUX/B	
Start S	top	1	CTR2_OUT	39	CTR3_	OUT	

Figure 71 Frequency Measure For Single Mode

- > The table in the sample program is a connection diagram for your convenience.
- > The result matches the frequency set before.

Finite/Continuous Mode

■ Open Counter Input-->Winform Cl Finite/Continuous Frequency Measure.

PCle-511	0 Continuous Frequenc	y Measure			-	×
	PCI	e-511	0 Continu	ious Frequency Measure		
-Basic Para	n Configuration			FrequencyMeasure(Hz)		
Slot Numbe:	r 0	∼ Sa	mple Rate			
Counter ID	0	~ 10	* *			
Measure Typ	FrequencyMeasu	re 10	mples to Acquire			
Clock Sour	re Internal	~				
	Start	Sto	qq			
5110_5111						
Pin	Signal Name	Pin	Signal Name			
11	CTR0_Source/A	42	CTR1_Source/A			
10	CTR0_Gate/Z	41	CTR1_Gate/Z			
43	CTR0_AUX/B	6	CTR1_AUX/B			
2	CTR0_OUT	40	CTR1_OUT			
5	CTR2_Source/A	3	CTR3_Source/A			
38	CTR2_Gate/Z	45	CTR3_Gate/Z			
37	CTR2_AUX/B	46	CTR3_AUX/B			
1	CTR2_OUT	39	CTR3_OUT			

Figure 72 Frequency Measure For Continuous Mode

- > The table in the sample program is a connection diagram for your convenience.
- Internal and Implicit Sample Clocks are set by Clock Source as before. (Please refer to Finite/Continuous Mode for more information.)
- Click Start and it will show the frequency 50 as set in the signal resource.

FrequencyMeasure(Hz)
50. 0007500112502
50. 0007531363441
50. 0007500112502
50. 0007531363441
50. 0007500112502
50. 0007531363441
50. 0007500112502
50. 0007500112502
50. 0007500112502
50. 0007500112502

8.8.4. Period Measurement

The counter measures the period of signal to measure. Period Measurements is using Frequency Measurement internally and returns the inverse result of Frequency Measurement. Refer to chapter 8.8.3 for more information.

Learn by Examples 8.8.4

- Connect the signal source's positive terminal to PCIe-5111 counter0's period measure source (CTR0_Gate/Z, Pin#10), negative terminal to the ground (DGND, Pin#44) as shown in Figure 3 and Figure 4. (CTR0_Gate/Z, DGND) consists of a period measure counter input and share the same ground.
- Set a squarewave signal (f=200Hz, Duty Cycle=50%, Vpp=5V).

Single Mode

Open Counter Input-->Winform CI Single Period Measure and click Start. The result is shown below by Period Measure(S):

Ø PCIe-5110 Single Mode Peroid Mea	sure				- 🗆 X
PCIe-5	5110 Single	Peroi	d Meas	ure	
-Basic Param Configuration	Measure Result	5110_5111			
Slot Number 0 🗸		Pin	Signal Name	Pin	Signal Name
	Peroid Measure(S)	11	CTR0_Source/A	42	CTR1_Source/A
Counter ID 0 ~	0.004999925	10	CTR0_Gate/Z	41	CTR1_Gate/Z
		43	CTR0_AUX/B	6	CTR1_AUX/B
Measure Type PeroidMeasure		2	CTR0_OUT	40	CTR1_OUT
		5	CTR2_Source/A	3	CTR3_Source/A
		38	CTR2_Gate/Z	45	CTR3_Gate/Z
Start	Stop	37	CTR2_AUX/B	46	CTR3_AUX/B
		1	CTR2_OUT	39	CTR3_OUT

Figure 74 Peroid Measure For Single Mode

- > The table in the sample program is a connection diagram for your convenience.
- The result of Period Measure(S) shows the correspond to the frequency set before.

Finite/Continuous Mode

Open Counter Input-->Winform CI Finite/Continuous Period Measure and click
 Start. The result is shown below by PeriodMeasure (S).

PCIe-51	10 Continuous Period	Measure		- 🗆 X
	PCI	e-511	0 Contin	uous Period Measure
-Basic Para	am Configuration—			PeroidMeas(S)
Slot Numbe	er O	~ <	ample Rate	0.00499992657894737
Country TI			ampre Nate	0.00499992684210526
counter 11	0	~ 1	LO 🔺	0.00499992657894737
Measure Ty	PeriodMeasu	re	amples to Acquire	0.00499992657894737
al 1 c				0.00499992657894737
Clock Sour	rce Internal	~	•	0.00499992657894737
				0.00499992657894737
		_		0.00499992657894737
	Start	Sto	qq	0.00499992657894737
				0.00499992657894737
5110_5111				
Pin	Signal Name	Pin	Signal Name	
11	CTR0_Source/A	42	CTR1_Source/A	
10	CTR0_Gate/Z	41	CTR1_Gate/Z	
43	CTR0_AUX/B	6	CTR1_AUX/B	
2	CTR0_OUT	40	CTR1_OUT	
5	CTR2_Source/A	3	CTR3_Source/A	
38	CTR2_Gate/Z	45	CTR3_Gate/Z	
37	CTR2_AUX/B	46	CTR3_AUX/B	
1	CTR2_OUT	39	CTR3_OUT	

Figure 75 Peroid Measure For Continuous Mode

- > The table in the sample program is a connection diagram for your convenience.
- The result of Period Measure(S) shows the correspond to the frequency set before.

8.8.5. Two-Edge Separation

The counter measures the separation between the rising edges of two signals.

Timing

1) Single Mode

The number of rising edges of timebase between the rising edge of the first signal and the rising edge of the second signal is written to the register on each rising edge of the second signal.

The number of rising edges of timebase between previous rising edge of the second signal and current rising edge of the first signal is written to the register on each rising edge of the first signal as shown in Figure 76.

Figure 76 Two-Edge Separation in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock:

The count values of rising edges of timebase between first signal and second signal are stored into buffer on each rising edge of the sample clock, as shown in Figure 77.

Figure 77 Two-Edge Separation with Internal Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count values of rising edges of timebase between first signal and second signal are stored into buffer on each rising edge of the first signal, as shown in Figure 78.

Figure 78 Two-Edge Separation with Implicit Sample Clock

Learn by Examples 8.8.5

- Connect the signal source's two positive terminals to PCIe-5111 first signal input (squarewave, CTR0_Gate/Z, Pin #10) and second signal input (squarewave, CTR0_AUX/B, Pin#43), two negative terminals to the ground (DGND, Pin#44) and (D_GND, Pin#9) as shown in Figure 3 and Figure 4.
- Set a squarewave signal (f=1Hz, Phase=0°) and a squarewave signal (f=1Hz, Phase=135°).

Single Mode

Open Counter Input-->Winform CI Single TwoEdgeSeparation Measure and click Start. The result is shown below by First to Second(S) and Second to First(S), which represent the time difference between the rising edges of the two signals:

PCIe-5110 Single Mod	PCIe-5110 Single Mode TwoEdgeSeparation Measure									
PC	CIe-5110 Singl	e TwoF	EdgeSeparati	on Me	asure					
Basic Param Configuration 5110_5111										
Slot Number	0 ~	Pin	Signal Name	Pin	Signal Name					
Counter ID	0 ~	11	CTR0_Source/A	42	CTR1_Source/A					
Measure Type	TwoEdgeSeparation	10	CTR0_Gate/Z	41	CTR1_Gate/Z					
Measure Result		43	CTR0_AUX/B	6	CTR1_AUX/B					
First to Second(S)	0.374994635	2	CTR0_OUT	40	CTR1_OUT					
Second to First(S)	0.62499105	5	CTR2_Source/A	3	CTR3_Source/A					
		38	CTR2_Gate/Z	45	CTR3_Gate/Z					
		37	CTR2_AUX/B	46	CTR3_AUX/B					
Start	Stop	1	CTR2_OUT	39	CTR3_OUT					

Figure 79 Two-EdgeSeparation Measure For Single Mode

- > The table in the sample program is a connection diagram for your convenience.
- Due to the phase-difference between First Signal and Second Signal, First to Second and Second to First are different and summarize as 1.

Finite/Continuous Mode

Open Counter Input-->Winform CI Finite/Continuous TwoEdge Separation Measure and click Start. The result is shown below by First to Second(S) and Second to First(S), which represent the time difference between the rising edges of the two signals:

PCIe-5110	🤣 PCIe-5110 Finite Mode TwoEdgeSeparation Measure - 🗆 🗙								
	PCIe-51	10 Fi	nite TwoH	EdgeSeparation	Measure				
-Basic Param	Configuration			First to Second Measurea(S)	Second to First Measurea(S)				
Slot Number	0	√ Samp	le Rate	0	0. 624991095				
		100	* *	0.37499466	0.624991095				
Counter ID	0	\sim		0. 37499466	0.624991095				
Clock Source	Teelisit	Samp	les to Acquire	0. 37499466	0.624991095				
CIUCK JOUICE	тириси	10		0. 37499466	0. 624991085				
Measure Type	TwoEdgeSeparation		المتسا	0. 37499465	0.624991085				
				0.374994655	0.62499109				
				0.374994655	0.624991085				
	Start		top	0.374994655	0.624991065				
				0.31435400	0.024001000				
5110_5111									
Pin	Signal Name	Pin	Signal Name						
11	CTR0_Source/A	42	CTR1_Source/A						
10	CTR0_Gate/Z	41	CTR1_Gate/Z						
43	CTR0_AUX/B	6	CTR1_AUX/B						
2	CTR0_OUT	40	CTR1_OUT						
5	CTR2_Source/A	3	CTR3_Source/A						
38	CTR2_Gate/Z	45	CTR3_Gate/Z						
37	CTR2_AUX/B	46	CTR3_AUX/B						
1	CTR2_OUT	39	CTR3_OUT						

Figure 80 Two-EdgeSeparation Measure For Finite Mode

- > The result in this picture is similar to the result in **Single Mode** before.
- The table in the sample program is a connection diagram for your convenience.

8.8.6. Quadrature Encoder

The quadrature encoder includes three encoding types: x1, x2, and x4.

Encoding Type

1) x1 Encoding

When A leads B, the count increase occurs on the rising edge of A; when B leads A, the count decrease occurs on the falling edge of A as shown in Figure 81.

Figure 81 Quadrature Encoder x1 Mode

2) x2 Encoding

When A leads B, the count increase occurs on the rising edge and the falling edge of A; when B leads A, the count reduction occurs on the rising edge and falling edge of A as shown in Figure 82.

Figure 82 Quadrature Encoder x2 Mode

3) x4 Encoding

When A leads B, the increase of count occurs on the rising and falling edges of A and B. When B leads A, the decrease in count occurs on the rising and falling edges of A and B. As shown in Figure 83.

Figure 83 Quadrature Encoder x4 mode

Channel Z Behavior

The phase is reloaded when channel Z is high, A and B are low.

Timing

Take Encoding x1 mode as an example.

1) Single Mode

The count value is written to the register on each rising edge of the signal A, as shown in Figure 55.

To configure the counter to work in this mode, set JY5111CITask. Mode to CIMode.Single.

2) Finite/Continuous Mode with Internal Sample Clock

The count value is stored into the buffer on each rising edge of the sample clock, as shown in Figure 84.

Figure 84 Quadrature Encoder x1 with Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count value is stored into the buffer every time it changes, as shown in Figure 85.

Figure 85 Quadrature Encoder x1 with Implicit Sample Clock

Learn by Examples 8.8.6

Connect the signal source's two positive terminals to PCIe-5111 first signal input (sinewave, CTR0_Source/A, Pin #11) and second signal input (square wave, CTR0_AUX/B, Pin#43), two negative terminals to the ground (DGND, Pin#44) and (D_GND, Pin#9) as shown in Figure 3 and Figure 4. (CTR0_Source/A, DGND)

consists of the first signal to be measured; (CTR0_AUX/B, D_GND) consists of the second signal to be measured.

Set a sqaurewave signal (f=10Hz, Phase=90°) and a squarewave signal (f=10Hz, Phase=0°).

Single Mode

Open Counter Input--> Winform CI Single QuadEncoder and click Start. The result is shown below by CounterValue according to the counting rules explained in 8.8.6:

PCIe-5110 Single Mode Q	- 🗆 ×									
PCIe-5110 Single QuadEncoder										
-Basic Param Configuration	1	5110_5111								
Slot Number	Counter ID	Pin	Signal Name	Pin	Signal Name					
0 ~	0 ~	11	CTR0_Source/A	42	CTR1_Source/A					
Encode Type X1	\sim	10	CTR0_Gate/Z	41	CTR1_Gate/Z					
Count Result		43	CTR0_AUX/B	6	CTR1_AUX/B					
		2	CTR0_OUT	40	CTR1_OUT					
CounterValue 32		5	CTR2_Source/A	3	CTR3_Source/A					
		38	CTR2_Gate/Z	45	CTR3_Gate/Z					
		37	CTR2_AUX/B	46	CTR3_AUX/B					
Start	Stop	1	CTR2_OUT	39	CTR3_OUT					

Figure 86 QuadEncoder For Single Mode

- The table in the sample program is a connection diagram for your convenience.
- Encoding Type is set by Encode Type (x1, x2, x4).
- When the *encode type* is changed from x1 to x2 and x4, you can see the rising speed of **CounterValue** is twice and four times than x1Mode.

Continuous Mode

Open Counter Input--> Winform CI Continuous QuadEncoder and click Start. The result is shown below by CounterValues.

PCIe-511	10 Continuous QuadEn	coder				_	×
	PCI	e-511	lO Conti	nuous	QuadEncoder		
-Basic Para	m Configuration—			CounterValu	les		
Slot Numbe	r O	√ Saī	ple Rate	1			
Counter ID	0	10	×	2 3			
Encode Typ	e X1	✓ Saī	mples to Acquire	4 5			
Clock Sour	ce Internal	10	T	6			
				8			
	O 1 1		.	9			
	Start		Stop	10			
5110_5111							
Pin	Signal Name	Pin	Signal Name				
11	CTR0_Source/A	42	CTR1_Source/A				
10	CTR0_Gate/Z	41	CTR1_Gate/Z				
43	CTR0_AUX/B	6	CTR1_AUX/B				
2	CTR0_OUT	40	CTR1_OUT				
5	CTR2_Source/A	3	CTR3_Source/A				
38	CTR2_Gate/Z	45	CTR3_Gate/Z				
37	CTR2_AUX/B	46	CTR3_AUX/B				
1	CTR2_OUT	39	CTR3_OUT				

Figure 87 QuadEncoder For Continuous Mode

- > The table in the sample program is a connection diagram for your convenience.
- > Encoding Type is set by Encode Type (x1, x2, x4).
- When the *encode type* is changed from x1 to x2 and x4, you can see the rising speed of **CounterValue** is twice and four times than x1Mode.

8.8.7. Two-Pulse Encoder

The count value increases on the rising edge of A and decreases on the rising edge of

Β.

Timing

1) Single Mode

The count value is written to the register on each rising edge of the signal A, and signal B, as shown in Figure 88.

Figure 88 Two-Pulse Encoder in Single Mode

2) Finite/Continuous Mode with Internal Sample Clock

The count value is stored into the buffer on each rising edge of the sample clock, as shown in Figure 89.

Figure 89 Two-Pulse Encoder with Internal Sample Clock

3) Finite/Continuous Mode with Implicit Sample Clock

The count value is stored into the buffer every time it changed, as shown in Figure 90.

Figure 90 Two-Pulse Encoder with Implicit Sample Clock

Learn by Examples 8.8.7

- Connect the signal source's positive terminal to PCIe-5111 signal input (squarewave, CTR0_Source/A, Pin #11), negative terminal to the ground (DGND, Pin#44)。
- Connect the PCIe-5111 signal input(CTR0_AUX/B, Pin#43)to ground (DGND, Pin#44).
- Set a sqaurewave signal (f=40Hz)

Single Mode

Open Counter Input-->Winform Cl Single Two PulseEncoder and set the numbers as shown.

🚸 PCIe-5110 Single Mode TwoPulseEncoder				- 🗆 X
PCIe-5110 Sing	gle Tw	voPu1seE	ncod	er
Basic Param Configuration	5110_5111			
Slot Number Counter ID	Pin	Signal Name	Pin	Signal Name
	11	CTR0_Source/A	42	CTR1_Source/A
Encoder Type EncoderTwoPulse ~	10	CTR0_Gate/Z	41	CTR1_Gate/Z
Count Result	43	CTR0_AUX/B	6	CTR1_AUX/B
	2	CTR0_OUT	40	CTR1_OUT
CounterValue U	5	CTR2_Source/A	3	CTR3_Source/A
	38	CTR2_Gate/Z	45	CTR3_Gate/Z
	37	CTR2_AUX/B	46	CTR3_AUX/B
Start Stop	1	CTR2_OUT	39	CTR3_OUT

Figure 9 ²	1 Two-Pi	ulseEncoder	For Sir	ngle M	ode
inguic J.	1 1 1 1 0 1 0	alscencouci	101.011	1910 141	ouc

- > The table in the sample program is a connection diagram for your convenience.
- Click Start to start counting. You can see a continuously rising of the Counter
 Value, which follows the counting rules explained in this chapter.

Finite Mode

- Connect the signal source's positive terminal to PCIe-5111 signal input (squarewave, CTR0_AUX/B, Pin#43), negative terminal to the ground (DGND, Pin#44)。
- Connect the PCIe-5111 signal input(CTR0_Source/A, Pin #11)to ground (DGND, Pin#44).
- Set a sqaurewave signal (f=40Hz).
- Open Counter Input-->Winform Cl Finite Two PulseEncoder and set the numbers as shown.

PCIe-5110 Finite Mode TwoPuls	eEncoder		— C	ı x
PC	Ie-51	10 Finit	e TwoPulseEncoder	
-Basic Param Configuration			CounterValues	
Slot Number 0	/ Sampl	e Rate	0	
Counter ID	100	* *	0	
· · · · · · · · · · · · · · · · · · ·	Sampl	es to Acquire	4294967295	
Clock Source Internal	/ 10	▲ ▼	4294967295	
			4294967294	
			4294967294	
Stort	Stor		4294967293	
Start	Stor	,	4294967293	
5110_5111			4294967292	
Pin Signal Name	Pin	Signal Name		
11 CTR0 Source/A	42	CTR1 Source/A		
10 CTR0_Gate/Z	41	CTR1_Gate/Z		
43 CTR0_AUX/B	6	CTR1_AUX/B		
2 CTR0_OUT	40	CTR1_OUT		
5 CTR2_Source/A	3	CTR3_Source/A		
38 CTR2_Gate/Z	45	CTR3_Gate/Z		
37 CTR2_AUX/B	46	CTR3_AUX/B		
1 CTR2_OUT	39	CTR3_OUT		

Figure 92 Two-PulseEncoder For Finite Mode

- > The table in the sample program is a connection diagram for your convenience.
- Click Start to start counting. You can see that the CounterValue is decreasing, which follows the counting rules explained in this chapter.

Continuous Mode

Open Counter Input-->Winform Cl Continuous Two PulseEncoder and set the numbers as shown.

PCIe-51	10 Continuous Two	PulseEnco	der			_	×
	PC	le-{	5110 Cor	ntinuous	TwoPulseEncoder		
-Basic Par	am Configuration	1		CounterValues			
Slot Numb	er O	~ Sa	ample Rate	4294967132			
	-	10		4294967128			
Counter 1	DU	Sa	amples to Acquire	4294967124			
Clock Sou	rce Internal	_ 10) <u>*</u>	4294967120			
				4294967116			
				4294967112			
				4294967108			
	Start	Stor	5	4294967104			
		-		4294967100			
5110_5111				4294967096			
Pin	Signal Name	Pin	Signal Name				
11	CTR0_Source/A	42	CTR1_Source/A				
10	CTR0_Gate/Z	41	CTR1_Gate/Z				
43	CTR0_AUX/B	6	CTR1_AUX/B				
2	CTR0_OUT	40	CTR1_OUT				
5	CTR2_Source/A	3	CTR3_Source/A				
38	CTR2_Gate/Z	45	CTR3_Gate/Z				
37	CTR2_AUX/B	46	CTR3_AUX/B				
1	CTR2_OUT	39	CTR3_OUT				

Figure 93 Two-PulseEncoder For Continuous Mode

- > The table in the sample program is a connection diagram for your convenience.
- Click Start to start counting. You can see that the CounterValue is decreasing, which follows the counting rules explained in this chapter.

8.9. Counter Output Operations

8.9.1. Single Pulse Output

The PCIe-5111 timer/counter can output a single pulse with a specified pulse width.

The timing diagram of the pulse output is shown in Figure 94.

In single pulse output mode, the user could set up the pulse width by configuring the frequency and duty cycle.

If you want to generate a single pulse with 1 ms pulse width, the parameter, frequency should be setup 500Hz and the duty cycle is 50%. Here is the formula for frequency setting:

Frequency = 1 / (1ms / 0.5) = 500Hz

Learn by Example 8.9.1

- To see the signal thatPCIe-5111 Counter Output generates, it is recommended to connect PCIe-5111 Counter Output (CTR0_OUT, Pin#2) to PCIe-5111 AI Ch0 input (AI0+, Pin#68). Please note Counter Output and AI Ch0 input share the same ground so only one connection is needed.
- Open Counter Output-->Winform CO Single and click Start and set the numbers as follow:

🚸 PCIe-5110 Single Mode Pulse Generation							
PCIe-5110 Single Pulse Generation							
Basic Param Config	guration	1	5110_5111				
Slot Number	0 ~	•	Pin	Signal Name	Pin	Signal Name	
Counter ID	0 ~		11	CTR0 Source/A	42	CTR1 Source/A	
Pulse Delay	0	-	10	CTR0 Gate/Z	41	CTR1 Gate/Z	
Pulse Parameter		Frequency	43	CTR0_AUX/B	6	CTR1 AUX/B	
OutputPulse Type	DutyCycleFrequency	2.000	2	CTR0 OUT	40	CTR1 OUT	
Idle State	LowLevel	0.500	5	CTR2_Source/A	3	CTR3 Source/A	
			38	CTR2 Gate/Z	45	CTR3 Gate/Z	
	start	c+op	37	CTR2_AUX/B	46	CTR3_AUX/B	
	Statt	0.00	1	CTR2_OUT	39	CTR3_OUT	

Figure 95 Single Pulse Generation

- > The table in the sample program is a connection diagram for your convenience.
- > The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.
- Please refer Learn by Example to configure an analog input to receive the signal from Counter Output.

■ Click **Start** to generate a single pulse as shown.

Figure 96 AI Acquisition Single Pulse

8.9.2. Finite Pulse Output

The pulse output timing is as shown in Figure 97.

In finite pulse output mode, the user is required to configure the output frequency, duty cycle and the number of output pulses.

Assuming that the pulse width to be output by the user is 1ms, the frequency calculated according to the duty cycle of 50% is as follows:

That is to say, when the user sets the frequency as 500Hz and the duty cycle as 0.5, a limited pulse of 1ms pulse width will be obtained.

Learn by Example 8.9.2

- To see the signal that PCIe-5111 Counter Output generates, it is recommended to connect PCIe-5111 Counter Output (CTR0_OUT, Pin#2) to PCIe-5111 AI Ch0 input (AI0+, Pin#68). Please note Counter Output and AI Ch0 input share the same ground so only one connection is needed.
- Open Counter Output-->Winform CO Finite and click Start and set the numbers as follow:

PCIe-5110 Finite Pulse Generatio	n				- 🗆 X		
PCIe-5110 Finite Pulse Generation							
Basic Param Configuration	-Pulse Parameter	5110_5111					
Slot Number 0 🗸 🗸 🗸	Pulse Type Frequency	Pin	Signal Name	Pin	Signal Name		
Counter ID 0 \sim	DutyCycleFrequency V 50.000	11	CTR0_Source/A	42	CTR1_Source/A		
nulse Count 1000	Idle State Duty Cycle	10	CTR0_Gate/Z	41	CTR1_Gate/Z		
parse count	LowLevel V. 500	43	CTR0_AUX/B	6	CTR1_AUX/B		
	•	2	CTR0_OUT	40	CTR1_OUT		
		5	CTR2_Source/A	3	CTR3_Source/A		
start	Stop	38	CTR2_Gate/Z	45	CTR3_Gate/Z		
		37	CTR2_AUX/B	46	CTR3_AUX/B		
		1	CTR2_OUT	39	CTR3_OUT		

Figure 98 Finite Pulses Generation

- > The table in the sample program is a connection diagram for your convenience.
- > The frequency and duty cycle of the pulse are set by **Frequency** and **Duty Cycle**.
- Please refer Learn by Example to configure an analog input to receive the signal from Counter Output.
- Click **Start** to generate the pulse shown below.

	PCIe	-5110	Singl	e Channe	el Cont	inuous	Data Ad	cquisitior	h
5. 5 -							- Series 1	-Basic Param Config Card ID	uration
								Slot Number	0
4.4								Channel ID	0
3 3								AI Terminal	RSE
J. J								Sample Clock	Internal
2.2								External Clock	PFI2
								Sample Kate(Sa/S)	1,000
1.1								Input Range	1,000
									Ξ107
0 									
1.1		200	400		800	1000		Start	Stop

Figure 99 AI Acquisition Finite Pulse

> According to the picture, the *duty cycle* is 0.5 as set before.

8.9.3. Continuous Pulse Output

The pulse output timing is shown in Figure 100 below.

Figure 100 Continuous Pulse Output

In continuous output mode, you need to configure the output frequency and duty cycle. After starting the output, the pulse signal with fixed frequency and duty cycle will be output continuously.

Learn by Example 8.9.3

■ To see the signal that PCIe-5111 Counter Output generates, it is recommended to connect PCIe-5111 Counter Output (CTR0_OUT, Pin#2) to PCIe-5111 AI Ch0 input (AI0+, Pin#68). Please note Counter Output and AI Ch0 input share the same ground so only one connection is needed.

■ Open Counter Output-->Winform CO Continuous and click Start and set the

numbers as follow:

PCIe-5110 Continuous Pulse Generation(Real-time Modification of Frequency And Duty Cycle) -							
PCIe-5110 Continuous Pulse Generation (Real-time Modification of Frequency And Duty Cycle)							
-Basic Param Configuration 5110_5111							
Slot Number 0	~	Pin	Signal Name	Pin	Signal Name		
Counter ID 0	\sim	11	CTR0_Source/A	42	CTR1_Source/A		
		10	CTR0_Gate/Z	41	CTR1_Gate/Z		
Pulse Parameter		43	CTR0_AUX/B	6	CTR1_AUX/B		
Pulse Type DutvCvcleFrequenc >	Frequency 50.000	2	CTR0_OUT	40	CTR1_OUT		
Idle State	Duty Cycle	5	CTR2_Source/A	3	CTR3_Source/A		
LowLevel ~	•	38	CTR2_Gate/Z	45	CTR3_Gate/Z		
	37 CTR2_AUX/B 46 CTR3_AUX/B						
start modificatio	n of d duty Stop	1	CTR2_OUT	39	CTR3_OUT		

Figure 101 Continuous Pulse Generation

> The table in the sample program is a connection diagram for your convenience.

The frequency and duty cycle of the pulse are set by Frequency and Duty Cycle.

■ Change the **Duty Cycle** to 0.7 for instance. The result is shown below.

Figure 102 AI Acquisition Continuous Pulse

> According to the picture, the **duty cycle** is 0.7 as set before.

8.10. System Synchronization Interface (SSI) for PCIe Modules

The synchronization between PCIe modules are handled differently from the PXIe synchronization, it is implemented by the system synchronization interface (SSI). SSI is designed as a bidirectional bus and it can synchronize up to four PCIe modules. One PCIe module is designated as the master module and the other PCIe modules are designated as the slave modules.

Figure 103	SSI Connector ir	n PCIe-5111
------------	------------------	-------------

Pin	Signal Name	Signal Name	Pin
1	PXI_TRIG0	GND	2
3	PXI_TRIG1	GND	4
5	PXI_TRIG2	GND	6
7	PXI_TRIG3	GND	8
9	PXI_TRIG4	GND	10
11	PXI_TRIG5	GND	12
13	PXI_TRIG6	GND	14
15	PXI_TRIG7	GND	16

Table 18 SSI Connector Pin Assignment for PCIe-5111

8.11. DIP Switch in PCIe-5111

PCIe-5111 module have a DIP switch. The card number can be adjusted manually by changing the DIP switch setting, which is used to identify the boards with different slot positions. For example, if you want to set the card number to 3, you could turn the position 2 and 1 of the DIP switch to the ON position and the orthers to OFF. See below for details.

Figure 104 DIP swich in PCIe-5111

	Position	Position	Position	Position		
	4	3	2	1		
	(GA3)	(GA2)	(GA1)	(GA0)		
Slot 0	0	0	0	0		
Slot 1	0	0	0	1		
Slot 2	0	0	1	0		
Slot 3	0	0	1	1		
Slot 4	0	1	0	0		
Slot 5	0	1	0	1		
Slot 6	0	1	1	0		
Slot 7	0	1	1	1		
Slot 8	1	0	0	0		
Slot 9	1	0	0	1		
Slot 10	1	0	1	0		
Slot 11	1	0	1	1		
Slot 12	1	1	0	0		
Slot 13	1	1	0	1		
Slot 14	1	1	1	0		
Slot 15	1	1	1	1		
Note: OFF=0/ ON=1						

Table 19 Relationship between switch position and slot number

9. Calibration

PCIe-5111 Series boards are precalibrated before the shipment. We recommend you recalibrate PCIe-5111 board periodically to ensure the measurement accuracy. A commonly accepted practice is one year. If for any reason, you need to recalibrate your board, please contact JYTEK.

10. Appendix(Measurement Issues)

10.1. Floating Signals and Ground Referenced Signals

Signals to be measured often fall into two categories: floating and ground referenced. The floating signals include battery output, isolated output, thermocouples etc; the ground referenced signals include most instrumentation output signals. Some instruments also offered isolated floating output.

10.2. Differential, NRSE, RSE Modes

The DAQ boards have three measurement modes: differential (DIFF), non-referenced singled end (NRSE), and the referenced single end (RSE). The NRSE mode is also referred as the pseudo differential mode. Under the NRSE mode, the DAQ card provides a common connecting terminal, referred as AI_Sensing. The negative ends of input signal and the DAQ boards are all connected to this terminal, making it look like the differential mode. Thus, the NRSE mode can handle twice as many channels as the DIFF mode.

The three measurement modes and the two types of input signals, floating and ground referenced, form 6 different measurement scenarios as shown in the following.

Figure 105 Six Measurement Scenarios

In the first 5 scenarios, V_{AB} is measured voltage. But in the 6th scenario, both the measured signal and the DAQ have own grounds. The two ground may have a voltage difference V_{BC} . The actual measurement is $V_{AC}=V_{AB}+V_{BC}$, not V_{AB} . Due to the ground noise, V_{BC} is quite noisy. This affects the measurement accuracy. The caution must be taken using 6th mode.

10.3. Reducing the Common Mode Voltage Effect

In the first 2 modes, the measured signal is floating. It is quite often that the common mode voltage will appear. To reduce this effect on the measurement accuracy, a resister can be added as shown. The value of this resister depends on the impedance of the signal source. As a rule of thumb, R should be 1000 times of the signal source output impedance, roughly 10K to $100K\Omega$. At this level, R has very little impact on the measurement.

Figure 106 Using Resister to Reduce Common Mode Voltage Effect

11. About JYTEK

11.1. JYTEK China

Founded in June, 2016, JYTEK China is a leading Chinese test & measurement company, providing complete software and hardware products for the test and measurement industry. The company has evolved from re-branding and reselling PXI(e) and DAQ products to a fully-fledged product company. The company offers complete lines of PXI, DAQ, USB products. More importantly, JYTEK has been promoting open-sourced based ecosystem and offers complete software products. Presently, JYTEK is focused on the Chinese market. Our Shanghai headquarters and production service center have regular stocks to ensure timely supply; we also have R&D centers in Xi'an and Chongqing. We also have highly trained direct technical sales representatives in Shanghai, Beijing, Tianjin, Xi'an, Chengdu, Nanjing, Wuhan, Guangdong, Haerbin, and Changchun. We also have many patners who provide system level support in various cities.

11.2. JYTEK Software Platform

JYTEK has developed a complete software platform, SeeSharp Platform, for the test and measurement applications. We leverage the open sources communities to provide the software tools. Our platform software is also open sourced and is free, thus lowering the cost of tests for our customers. We are the only domestic vendor to offer complete commercial software and hardware tools.

11.3. JYTEK Warranty and Support Services

With our complete software and hardware products, JYTEK is able to provide technical and sales services to wide range of applications and customers. In most cases, our products are backed by a 1-year warranty. For technical consultation, pre-sale and after-sales support, please contact JYTEK of your country.

12. Statement

The hardware and software products described in this manual are provided by JYTEK China, or JYTEK in short.

This manual provides the product review, quick start, some driver interface explanation for PCIe-5111 family of temperature sensor data acquisition cards. The manual is copyrighted by JYTEK.

No warranty is given as to any implied warranties, express or implied, including any purpose or non-infringement of intellectual property rights, unless such disclaimer is legally invalid. JYTEK is not responsible for any incidental or consequential damages related to performance or use of this manual. The information contained in this manual is subject to change without notice.

While we try to keep this manual up to date, there are factors beyond our control that may affect the accuracy of the manual. Please check the latest manual and product information from our website.

Shanghai Jianyi Technology Co., Ltd.

Address: Room 201, Building 3, NO.300 Fangchun Road, Shanghai.

Post Code: 201203

Tel: 021-5047 5899

Website: www.jytek.com